当前位置:主页 > 科技论文 > 电子信息论文 >

N通道滤波器的研究与设计

发布时间:2018-01-14 12:34

  本文关键词:N通道滤波器的研究与设计 出处:《广西师范大学》2017年硕士论文 论文类型:学位论文


  更多相关文章: N通道滤波 信道选择 可调谐 开关电容


【摘要】:随着集成电路产品广泛应用到民用领域和军事领域的各个方面,人们对集成电路的性能要求也不断提高。滤波器作为通信系统中应用极为广泛的单元之一,它在信号的获取、传输及处理中起着非常重要的作用。多数情况下,滤波器性能的好坏,将对整个系统的性能产生决定性的影响。因此随着信息科学技术尤其是无线通信技术的不断演进,对滤波器功能及性能的要求也不断的提高。而由于N通道滤波器具有时钟频率直接可调,比CMOS片上LC滤波器具有更高的品质因数,高线性度和完美的缩放工艺等特点,使得很多人将目光投向N通道滤波器技术。本文旨在对N通道滤波技术进行深入研究并设计出性能优良的N通道滤波器电路。为了实现此目的,本文首先研究和分析了设计N通道滤波器需要掌握的电路理论,同时对米勒滤波技术、中心频率变换技术、增益提高技术等多种技术进行了深入研究。然后在此基础上,完成了以下三款N通道滤波器的设计与仿真验证:(1)研究了一款单端米勒N通道带通滤波器,使用米勒滤波技术,实现电容倍增,有效减少芯片面积,实现开关导通电阻倍减,减少本振支路功耗。通过对8通道带通滤波器前仿真验证:其频率可调范围为0.2~2.3GHz,3dB带宽为5MHz,增益17dB~18.9dB。输入三阶交调点为8.7dBm。噪声系数为5.4dB。(2)研究设计了一款全差分米勒N通道带通滤波器,通过两个中心频率不同的N通道滤波网络差分,增加滤波器的带宽和阶数。同时使用中心频率变换技术,使得两个中心频率不同的N通道网络由一个时钟控制产生,且两个N通道网络的中心频率相对于时钟频率上下偏移相同的量。通过对8通道带通滤波器前仿真验证:其频率可调范围为0.2~2.3GHz,3dB带宽增加为40MHz,增益26dB~27.8dB。输入三阶交调点为21.5dBm。噪声系数为8.2dB。(3)研究了一款N通道陷波带通两用滤波器,使用时钟差分技术和增益提高技术,该电路具有结构简单易于实现两种滤波的特点。对8通道滤波器进行了前仿真验证,之后完成了版图设计与后仿真验证。后仿真结果显示,其频率可调范围为0.2~2.2GHz,带通滤波时增益8.0dB~9.2dB,陷波时增益为-5dB~-4dB,最大抑制比为22dB。输入三阶交调点为13.3dBm,噪声系数为4.2dB。
[Abstract]:With the wide application of integrated circuit products in civil and military fields, the performance requirements of integrated circuits have been continuously improved. Filter is one of the most widely used units in communication systems. It plays a very important role in signal acquisition, transmission and processing. In most cases, the performance of the filter is good or bad. It will have a decisive impact on the performance of the whole system. Therefore, with the continuous evolution of information science and technology, especially wireless communication technology. The function and performance of the filter are also improved. Because the N channel filter has direct clock frequency adjustable, it has a higher quality factor than the LC filter on CMOS chip. High linearity and perfect scaling technology. In order to achieve this purpose, this paper aims to study the N-channel filter technology and design the N-channel filter circuit with good performance. In this paper, we first study and analyze the circuit theory needed to design N-channel filter, at the same time, Hans Muller filter technology, center frequency conversion technology. On the basis of this, the design and simulation of the following three N-channel filters are completed. (1) A single-ended Hans Muller N-channel bandpass filter is studied. Hans Muller filter technology is used to realize capacitance multiplication, reduce chip area effectively, and realize double reduction of switch on-resistance. The simulation of 8-channel bandpass filter shows that the frequency adjustable range is 0.2 ~ 2.3GHz ~ (3) dB bandwidth is 5 MHz. A fully differential Hans Muller N-channel bandpass filter is designed with a gain of 17dBN 18.9dB. the input third-order crossover point is 8.7 dBmand the noise coefficient is 5.4dB. The bandwidth and order of the filter are increased by the difference of two N-channel filter networks with different center frequency. The center frequency transform technique is used at the same time. Two N-channel networks with different central frequencies are generated by one clock control. The center frequency of the two N-channel networks has the same offset relative to the clock frequency. The simulation results before the 8-channel bandpass filter show that the frequency adjustable range is 0.2 ~ 2.3GHz. The 3dB bandwidth is increased to 40MHz. A N-channel notch band-pass filter is studied with gain of 26dBN 27.8dB.The input third-order crossover point is 21.5dBm.The noise coefficient is 8.2dB. Using clock difference technique and gain enhancement technique, the circuit has the characteristics of simple structure and easy to realize the two kinds of filter. The pre-simulation of 8-channel filter is carried out. The post-simulation results show that the frequency adjustable range is 0.2 ~ 2.2GHz, and the gain of band-pass filter is 8.0dB ~ (-2) dB. The notch gain is -5 dB ~ 4 dB, the maximum rejection ratio is 22 dB, the input third-order crossover point is 13.3 dBmand the noise coefficient is 4.2 dB.
【学位授予单位】:广西师范大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:TN713

【参考文献】

相关期刊论文 前4条

1 牟剑;;初探集成电路版图设计的技巧[J];信息系统工程;2016年02期

2 金善子;;模拟电路版图设计中的匹配艺术[J];中国集成电路;2006年12期

3 付拾明;;N通道滤波器的原理分析及其在微弱信号检测技术中的应用[J];宇航计测技术;1989年05期

4 李兰友;韩其睿;;N通道开关电容滤波器解析[J];天津纺织工学院学报;1984年02期



本文编号:1423619

资料下载
论文发表

本文链接:https://www.wllwen.com/kejilunwen/dianzigongchenglunwen/1423619.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户428fc***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com