多环境下硅通孔互连结构可靠性技术研究
本文关键词:多环境下硅通孔互连结构可靠性技术研究 出处:《桂林电子科技大学》2015年硕士论文 论文类型:学位论文
更多相关文章: 硅通孔 随机振动 灰色关联 热-结构耦合、温-振耦合
【摘要】:硅通孔(Through Silicon Via,TSV)互连结构的可靠性直接影响三维封装器件的性能,对TSV互连结构在各种环境下进行可靠性展开研究有着非常重要的意义。本文以采用TSV互连结构的3D-TSV叠层芯片封装器件为对象,应用有限元数值仿真点的方法分析了TSV互连结构在随机振动、热-结构耦合及温-振耦合等条件下的可靠性,并对随机振动条件下TSV互连结构进行了多因素多目标优化设计。首先,使用ANSYS软件建立了采用TSV互连结构的3D-TSV叠层芯片封装结构有限元模型,分析在随机振动条件下TSV互连结构的应力应变响应。研究结果表明:在随机振动条件下,位于芯片最远角点处的TSV互连结构应力应变最大;TSV高度不仅仅影响TSV互连结构的最大应力应变值,还影响TSV互连结构应力应变的分布规律,在所选高度范围内,75μm时TSV互连结构的最大应力值最小;微凸点材料为无铅焊料SAC387时TSV互连结构的随机振动可靠性优于微凸点材料为铜;在所选的四种焊料中,针对微凸点而言,有铅焊料Sn63Pb37本身的随机振动特性最好,针对整个TSV互连结构体系而言,焊料为SAC387时TSV互连结构的应力应变均为最小,随机振动性能最佳。然后,正交试验设计方差分析得到TSV高度对随机振动条件下TSV互连结构的等效应力影响显著,并且得到各个因素影响排序为TSV高度TSV直径微凸点直径微凸点高度;基于正交试验与灰色关联分析相结合方法的多因素多目标优化设计得到最优参数水平组合为:TSV高度为50μm,TSV直径为40μm,微凸点高度为10μm,微凸点直径为70μm;通过与原始模型以及正交试验表格中各组合的随机振动分析结果对比可知,最优组合的四种优化目标均得到了不同程度的优化,因此,通过运用正交试验和灰色关联分析相结合方法实现了TSV互连结构的多目标优化。最后,对TSV互连结构进行热-结构耦合分析和温-振耦合分析,并对两种条件下不同尺寸参数的TSV互连结构可靠性进行分析。研究结果表明,在TSV互连结构的实际工作和应用过程中,想要获得更小尺寸更高可靠性的TSV互连结构,必须要考察温度效应和尺寸效应对TSV互连结构热-结构耦合及温-振耦合可靠性的影响。本文的研究成果为TSV互连技术的实际应用和发展提供可靠性理论基础和技术支持。
[Abstract]:The reliability of the through Silicon via TSVV interconnect structure has a direct impact on the performance of 3D packaging devices. It is of great significance to study the reliability of TSV interconnects in various environments. In this paper, 3D-TSV laminated chip packaging devices with TSV interconnection structure are taken as the object. The reliability of TSV interconnection structures under random vibration, thermal-structural coupling and temperature-vibration coupling is analyzed by means of finite element numerical simulation point method. And the multi-factor and multi-objective optimization design of TSV interconnection structure under random vibration is carried out. First of all. The finite element model of 3D-TSV laminated chip encapsulation structure using TSV interconnection structure is established by using ANSYS software. The stress-strain response of TSV interconnection structure under random vibration is analyzed. The results show that the maximum stress-strain of TSV interconnection structure lies at the farthest corner of the chip under random vibration condition. The height of TSV not only affects the maximum stress and strain value of TSV interconnection structure, but also affects the distribution of stress and strain of TSV interconnection structure in the selected height range. At 75 渭 m, the maximum stress of TSV interconnection structure is the minimum. The random vibration reliability of TSV interconnect is better than that of copper when the micro-convex spot material is lead-free solder SAC387. Among the four solders selected, the lead solder Sn63Pb37 has the best random vibration characteristics for micro-convex spots, and the whole TSV interconnection system. When the solder is SAC387, the stress and strain of TSV interconnect structure is minimum, and the random vibration performance is the best. The analysis of variance of orthogonal design shows that the TSV height has a significant effect on the equivalent stress of TSV interconnection structure under random vibration. The order of influence factors is TSV height, TSV diameter, TSV diameter, microconvex point height. Based on the combination of orthogonal test and grey correlation analysis, the optimal parameter level combination of multi-factor and multi-objective optimization is that the height of TSV is 50 渭 m and the diameter of TSV is 40 渭 m. The height of the microconvex point is 10 渭 m and the diameter of the microconvex point is 70 渭 m. By comparing with the results of random vibration analysis of each combination in the original model and the orthogonal test table, it can be seen that the four optimization objectives of the optimal combination are all optimized to varying degrees. The multi-objective optimization of TSV interconnection structure is realized by using orthogonal test and grey correlation analysis. Finally, thermo-structural coupling analysis and temperature-vibration coupling analysis of TSV interconnection structure are carried out. The reliability of TSV interconnection structure with different size parameters is analyzed under two conditions. The results show that in the practical work and application process of TSV interconnection structure. Want to obtain smaller size and higher reliability of the TSV interconnection structure. The influence of temperature effect and size effect on the thermo-structural coupling and thermo-vibration coupling reliability of TSV interconnection structures must be investigated. The research results in this paper provide a reliability theory for the practical application and development of TSV interconnection technology. Basic and technical support.
【学位授予单位】:桂林电子科技大学
【学位级别】:硕士
【学位授予年份】:2015
【分类号】:TN405
【参考文献】
相关期刊论文 前5条
1 韩潇;丁汉;盛鑫军;张波;;CSP封装Sn-3.5Ag焊点的热疲劳寿命预测[J];半导体学报;2006年09期
2 赵璋;童志义;;3D-TSV技术——延续摩尔定律的有效通途[J];电子工业专用设备;2011年03期
3 郎鹏;高志方;牛艳红;;3D封装与硅通孔(TSV)工艺技术[J];电子工艺技术;2009年06期
4 李娜;余心宏;;无铅焊料十温区回流焊过程的仿真研究[J];电子工艺技术;2012年01期
5 ZHONG ShunAn;WANG ShiWei;CHEN QianWen;DING YingTao;;Thermal reliability analysis and optimization of polymer insulating through-silicon-vias(TSVs) for 3D integration[J];Science China(Technological Sciences);2014年01期
相关硕士学位论文 前4条
1 王荣乾;军用电子机柜随机振动疲劳分析[D];北京交通大学;2007年
2 王宏明;应用于三维叠层封装的硅通孔(TSV)建模及传热和加载分析[D];西安电子科技大学;2012年
3 黄林娟;半导体器件和集成电路的电—热—力特性的多物理场仿真研究[D];浙江大学;2013年
4 李玮;硅通孔界面应力分析[D];北京工业大学;2013年
,本文编号:1439776
本文链接:https://www.wllwen.com/kejilunwen/dianzigongchenglunwen/1439776.html