多热源凸凹微细流道散热特性研究
发布时间:2018-02-13 06:15
本文关键词: 多热源 液冷技术 凸凹位置 凸凹形状 流道结构设计 出处:《电子科技大学》2016年硕士论文 论文类型:学位论文
【摘要】:随着多芯片组件技术在电子产品中的广泛应用,使得电子设备中电子元器件的封装密度越来越高,而且电子设备功率的提高也导致了产品发热量的不断增大。多芯片组件产品是将多块电路芯片组装在一块基板上,这就必然会引起因各芯片发热量不同而导致的基板受热不均匀,产生不同热应力的现象,从而影响多芯片组件使用寿命。因此,设计出针对多热源区域散热的散热器是非常有必要的。相比于风冷散热方式,液冷微流道散热方式具有所需空间小、结构紧凑、散热效率高等优点,而且随着封装工艺的进步,液冷系统中的微流道封装也不再是难题,因此为了满足高热流密度芯片的散热要求,微流道液体散热方式是芯片散热领域的一个重要研究方向,而且由于液体在微流道中流动,可以针对不同热源设计出不同的微流道结构,进行有目的散热,使芯片基板温度更加均匀。为了更好的了解芯片液冷散热的热量传递路径,研究芯片液冷的热扩散性,本文通过简化芯片液冷散热结构,把微流道散热器等效为固体热沉结构,从微流道结构内部各部分热阻求出微流道散热器热阻,然后采用逆推方法,求出等效换热系数,从而求出芯片液冷的扩散热阻,然后再通过仿真软件Icepack分析验证该等效算法的误差性,最后得出该等效算法在功率较低时误差率在5%以内。由于微流道内部壁面的凸凹结构可以打破流体边界层,使流体发生相互扰动,增强微流道的换热特性,所以本文主要针对凸凹微细流道传热特性进行分析,研究错位凸凹、对称凸凹、错位双凹、对称双凹等四种流道壁面及三角形、梯形、圆弧形等三种凸凹形状模型的传热特性,然后通过对圆弧形和三角形进行实验分析,最后得出错位凸凹圆弧具有良好的传热特性。最后,设计出三种针对多热源的微流道散热器,使用Fluent软件对三种散热器进行散热特性分析,从流速和泵功率以及层数的角度出发,对比分析三种模型的温度场和流场变化,考虑不同区域的热源变化,得出模型二有较好的传热特性和较低的泵功率。
[Abstract]:With the wide application of multi-chip module technology in electronic products, the packaging density of electronic components in electronic devices becomes higher and higher. And the increase in the power of the electronic equipment also leads to the continuous increase of the calorific value of the product. The multi-chip module product is to install the multi-circuit chipset on one substrate. This will inevitably lead to uneven heating of the substrate due to different calorific values of each chip, resulting in different thermal stresses, thus affecting the service life of multichip modules. It is very necessary to design a radiator for multi-heat source area. Compared with the air-cooled heat dissipation mode, the liquid-cooled micro-channel cooling mode has the advantages of small space, compact structure, high heat dissipation efficiency and so on, and with the development of packaging technology, The microchannel packaging in liquid-cooled system is no longer a difficult problem, so in order to meet the requirement of high heat flux chip, the liquid cooling mode of microchannel is an important research direction in the field of chip heat dissipation, and because the liquid flows in the microchannel, Different microchannel structures can be designed for different heat sources, and the temperature of the chip substrate can be more homogenized. In order to better understand the heat transfer path of the chip liquid cooling heat dissipation, the thermal diffusion of the chip liquid cooling can be studied. In this paper, the microchannel radiator is equivalent to a solid heat sink structure by simplifying the chip liquid-cooled heat dissipation structure. The thermal resistance of the microchannel radiator is obtained from the thermal resistance of each part of the microchannel structure, and the equivalent heat transfer coefficient is obtained by using the inverse method. The diffusive thermal resistance of the chip liquid cooling is obtained, and then the error of the equivalent algorithm is verified by the simulation software Icepack. Finally, it is concluded that the error rate of the equivalent algorithm is less than 5% when the power is low. Because the convex-concave structure of the inner wall of the microchannel can break the boundary layer of the fluid, the fluid will be disturbed each other, and the heat transfer characteristics of the microchannel can be enhanced. So this paper mainly analyzes the heat transfer characteristics of convex-concave micro-channel, and studies the heat transfer characteristics of four kinds of flow channel wall and triangular, trapezoid and circular arc models, which are staggered convex and concave, symmetrical convex concave, staggered double concave and symmetrical double concave. Then through the experimental analysis of circular arc and triangle, it is concluded that the dislocated convex and concave circular arc has good heat transfer characteristics. Finally, three kinds of microchannel radiators for multiple heat sources are designed. The heat dissipation characteristics of three radiators are analyzed by using Fluent software. From the point of view of flow velocity, pump power and layer number, the temperature field and flow field of the three models are compared and analyzed, and the heat source changes in different regions are considered. It is concluded that model 2 has better heat transfer characteristics and lower pump power.
【学位授予单位】:电子科技大学
【学位级别】:硕士
【学位授予年份】:2016
【分类号】:TN402
【相似文献】
相关期刊论文 前5条
1 李洪才;陈非凡;董永贵;;功率器件散热特性的非稳态测量方法[J];电工技术学报;2012年02期
2 梁融;聂宇宏;聂德云;姚寿广;;LED散热器散热特性分析及结构优化[J];照明工程学报;2014年01期
3 李竞波;彭浩;;散热器的电磁辐射和散热特性分析[J];电子科技;2010年01期
4 贾京;冯士维;邓兵;孟庆辉;张亚民;;基于热阻测量的PCB散热特性[J];电工技术学报;2014年09期
5 ;[J];;年期
相关会议论文 前2条
1 辛岳芝;胡松涛;刘国丹;;高原低气压环境下人体散热特性的实验研究[A];山东土木建筑学会建筑热能动力专业委员会第十二届学术交流大会论文集[C];2008年
2 辛岳芝;刘国丹;胡松涛;生晓燕;;低气压环境对人体散热特性影响的研究初探[A];山东土木建筑学会建筑热能动力专业委员会第十二届学术交流大会论文集[C];2008年
相关硕士学位论文 前4条
1 李悦;多热源凸凹微细流道散热特性研究[D];电子科技大学;2016年
2 李保成;粒子雾辐射散热特性的研究[D];哈尔滨工业大学;2008年
3 吴云川;基于三维微通道散热的芯片热点散热特性研究[D];电子科技大学;2014年
4 韦香妮;新型大功率LED灯散热器开发及散热特性研究[D];山东大学;2014年
,本文编号:1507507
本文链接:https://www.wllwen.com/kejilunwen/dianzigongchenglunwen/1507507.html