基于FPGA的高速信号采集
本文选题:高速采集 切入点:智能传感器 出处:《西南交通大学》2017年硕士论文
【摘要】:随着科技的不断进步,国防、天文、工业、农业等领域经常需要对电压、电流、温度、压力、流量等信号进行实时采集,并且对信号采集的实时性要求越来越高。传统温度采集方式则是采用单片机或DSP作为控制核心来设计温度监测系统。然而,这种方式存在一定的缺陷,不能满足许多高要求的信号采集场合。一方面,此系统的大多数功能都是通过软件来实现的,而软件的运行会占据一部分系统采样时间,从而降低系统采集速率;另一方面,系统对复杂外围电路的逻辑也不能很好地控制。而现场可编程门阵列(FPGA)具有并行处理性,可控性,处理速度快等特性,因此,以FPGA为控制核心的信号采集系统可实现高速信号采集。本论文主要包含五大部分:第一部分为绪论部分,论述了本设计的研究背景,国内外现状,以及设计的主要研究内容;第二部分设计了数据采集板硬件电路,主要设计了温度信号采集模块,温度数据显示模块,FPGA基本配置模块,无线通信模块,电压采集模块的硬件电路;在FPGA程序设计部分,依次对AD9280电压采集模块,DS18B20的温度采集模块,数据缓存模块,数据无线发送模块等进行了控制设计;第四部分为PC软件设计,以Labview为设计平台,设计出PC监控系统;最后,进行了系统调试,先对系统的硬件部分进行测试,之后将系统的软硬件结合,对整个系统进行了可靠性测试。本论文给出了系统采集部分的控制原理,对数据显示控制核,数据转换控制核进行仿真,并对整个温度采集电路进行了验证;设计出了 AD9280电压采集的控制核,并对其进行实际验证;结合FIFO的工作原理,设计了同步FIFO作为采集系统的存储模块;详细描述了在线配置蓝牙模块相关参数的方法,并基于蓝牙模块无线通信的原理,给出了蓝牙通信的程序设计,同时对通信控制核进行了仿真;设计了以FPGA为核心的整个温度采集硬件控制电路的顶层模块,对系统硬件控制部分中的子模块进行了模块互连,对其进行测试;设计了 PC监控端,并结合硬件控制电路进行了反复测试,将采集到的数据传给PC端进行分析,最后完成了高速信号采集的无线监控系统设计。系统采用FPGA芯片EP2C8Q208C8N来搭建整个系统的硬件控制电路,舍弃了传统的传感器搭配外围电路的思想,直接采用智能传感器与FPGA相结合的方式。此外,系统中的存储器采用FPGA的内部资源(FIFO),可以在线配置。在蓝牙2.0模块的基础上搭建无线传输模块,在Labview的平台上设计了 PC监控端。以这样的思路搭建系统的硬件部分大大地降低了采集系统的复杂性。系统经过反复测试,测试结果表明该设计适用于精度为0.5℃的无线实时监控系统。
[Abstract]:With the continuous progress of science and technology, national defense, astronomy, industry, agriculture and other fields often need to voltage, current, temperature, pressure, flow and other real-time signal acquisition, and the real-time signal acquisition requirements more and more high. The traditional temperature acquisition is the use of single chip computer or DSP is used as control core to design a temperature monitoring system this way. However, there are some defects, can not meet the requirements of many high signal acquisition occasions. On the one hand, most of the features of this system are realized by software, and the operation of the software will occupy a part of the system sampling time, and reduce the system acquisition rate; on the other hand, the system logic of complex peripheral the circuit is not controlled well. The field programmable gate array (FPGA) with parallel processing, controllability, processing speed and other characteristics. Therefore, the signal acquisition system control core based on FPGA Can achieve high-speed signal acquisition. This paper mainly includes five parts: the first part is introduction, discusses the research background of this design, the status quo at home and abroad, and the main contents of the design; the second part design the hardware circuit of data acquisition board, the main design of the temperature of the temperature signal acquisition module, data display module, FPGA configuration module, wireless communication module, the hardware circuit of the voltage acquisition module; the FPGA program design, in order to AD9280 voltage acquisition module, temperature acquisition module of DS18B20, the data cache module, wireless data transmission module for the control design; the fourth part is the software design of PC, with Labview as the design platform, the design of PC monitoring finally, the system; the system debugging, the first test of the hardware part, the system software and hardware combination of the whole system reliability test. This paper introduces the control principle of the data acquisition part of the system, display and control of nuclear, nuclear data conversion control is simulated, and the temperature acquisition circuit was verified; designed the control of nuclear AD9280 voltage acquisition, and tested the combination; FIFO of the work principle, design a synchronous FIFO as storage module acquisition system; the method of online configuration of Bluetooth module parameters described in detail, and based on the principle of Bluetooth wireless communication module, gives the program design of Bluetooth communication, the communication control core was simulated; the top-level module is designed with FPGA as the core of the temperature acquisition hardware control circuit, the control system hardware part in the sub module of the module interconnection, the test; design the PC monitoring terminal, combined with the hardware control circuit of repeated testing, the data collected will be sent to the PC The end is analyzed, finally completed the design of the wireless monitoring system of high speed signal acquisition. The system adopts FPGA chip EP2C8Q208C8N to build the whole system hardware control circuit, abandoning the traditional sensor collocation of peripheral circuit, directly using intelligent sensor and FPGA combination. In addition, the memory system using the FPGA internal resources (FIFO), online configuration. To build a wireless transmission module based on Bluetooth 2 module on the Labview platform in the design of PC monitoring terminal. The hardware part greatly in this way to build a system to reduce the complexity of the system acquisition system. After repeated testing, the test results show that the design is suitable for precision for wireless the real-time monitoring system of 0.5 degrees.
【学位授予单位】:西南交通大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:TP274.2;TN791
【参考文献】
相关期刊论文 前10条
1 罗超;刘昌禄;胡敬营;;一种基于FPGA的并行CRC及其UART实现[J];电子测量技术;2016年02期
2 于志翔;;基于FPGA的UART设计与实现[J];电子测量技术;2015年03期
3 CHEN Shanzhi;SUN Shaohui;WANG Yingmin;XIAO Guojun;Rakesh Tamrakar;;A Comprehensive Survey of TDD-Based Mobile Communications Systems from TD-SCDMA 3G to TDLTE-Advanced 4G and 5G directions[J];中国通信;2015年02期
4 张松;李筠;;FPGA的模块化设计方法[J];电子测量与仪器学报;2014年05期
5 李保刚;马登武;;FPGA在多路数据采集系统中的应用研究[J];计算机测量与控制;2012年04期
6 李会聪;;DS18B20多点测温方法探讨[J];微计算机信息;2010年26期
7 李鹏;马游春;李锦明;;基于FPGA的多路数据采集模块硬件设计[J];仪表技术与传感器;2010年03期
8 杨海钢;孙嘉斌;王慰;;FPGA器件设计技术发展综述[J];电子与信息学报;2010年03期
9 段素蓉;庄圣贤;;一种内置FIFO全双工UART的设计与实现[J];通信技术;2010年02期
10 戴玉洁;戴玉梅;;温度传感技术实验方法的改进[J];辽东学院学报(自然科学版);2008年04期
,本文编号:1655524
本文链接:https://www.wllwen.com/kejilunwen/dianzigongchenglunwen/1655524.html