卡尔曼滤波器在多元信号融合中的应用研究
本文选题:卡尔曼滤波器 切入点:煤发热量 出处:《华北电力大学》2017年硕士论文
【摘要】:随以风电为代表的可再生能源规模化并网,火电机组调峰调频任务日益艰巨。为快速响应发电负荷指令变化同时保证机组安全、经济、环保运行,需要对机组关键系统进行更加有效的监视和控制。对象关键状态参数测不到或测不准一直是困扰状态检测和优化控制的难题。事实上,如煤发热量、锅炉效率、热量信号等许多测量或软测量信号无法同时满足准确性和实时性的要求。针对同一信号,采用某种测量方法得到的结果静态误差小但动态误差大,而采用另外一种测量方法得到的结果动态误差小但静态误差大。卡尔曼滤波器在组合导航中获得成功应用。GPS定位信号静态准确度好但实时性差,惯性定位信号实时性好但静态准确度差,卡尔曼滤波器发挥两者优点,获得既准又快的综合定位信号。将这种方法借鉴到多元热工信号融合领域。以现场入炉煤发热量测量为例分析了不同测量方法的特点:实验室化验结果静态准确度高,但测量结果为离散点且存在滞后;利用锅炉效率正反平衡分析方法相结合得到的结果,机组稳定运行工况下准确度高,但变负荷工况时存在巨大的动态误差;制粉系统热力计算结合烟气成份分析得到结果也只在稳定工况下有效;而基于机组发电负荷-机前压力简化非线性动态模型构造的结果,能够较快反映煤发热量变化情况但静态基准值难以确定。不同的方法在静态准确度和实时性上各有特点,在此,研究了两种煤发热量信息融合方法:(1)结合卡尔曼滤波预估-校正实质,利用实验室化验法得到的煤发热量的数据,实时修正基于机组负荷-压力模型动态法得到的实时煤发热量值。(2)针对动态法和基于制粉系统热力计算结合烟气成份分析得到结果的静态法在实时性和静态精度上互补的特点,对其进行信息融合。利用机组实时运行数据验证,得到静态准确度和动态误差均小于4%的综合发热量信号,能够满足工程实用要求。
[Abstract]:With the large-scale grid connection of renewable energy represented by wind power, the task of peak shaving and frequency modulation of thermal power units is becoming increasingly arduous. In order to quickly respond to the change of power generation load and ensure the safety, economy and environmental protection of the units, It is necessary to monitor and control the key system of the unit more effectively. It is a difficult problem for the state detection and optimization control that the key state parameter of the object can not be measured or uncertain. In fact, the boiler efficiency, such as coal calorific value, boiler efficiency, etc. Many measuring or soft measuring signals such as heat signal can not meet the requirements of accuracy and real-time simultaneously. For the same signal, the static error is small but the dynamic error is large. However, the dynamic error is small but the static error is large by using another measuring method. The Kalman filter has been successfully used in integrated navigation. The GPS positioning signal has good static accuracy but poor real-time performance. Inertial positioning signal has good real-time performance but poor static accuracy, and Kalman filter has the advantages of both. This method is used for reference in the field of multi-element thermal signal fusion. The characteristics of different measurement methods are analyzed by taking the measurement of calorific value of coal in situ as an example: the static accuracy of laboratory test results is high. However, the measurement results are discrete points and lag, and the results obtained by combining the positive and negative balance analysis method of boiler efficiency show that the accuracy of the unit is high under stable operating conditions, but there is a huge dynamic error under variable load conditions. The results obtained from the thermodynamic calculation of pulverizing system combined with the analysis of flue gas composition are only valid under steady working conditions, but based on the results of simplified nonlinear dynamic model construction of generating load-front pressure of generating units, It can reflect the change of coal calorific value quickly, but the static reference value is difficult to determine. Different methods have their own characteristics in static accuracy and real time. This paper studies two fusion methods of coal calorific value information: 1) combined with Kalman filter prediction-correction essence, using the data of coal calorific value obtained by laboratory test method. Real-time correction is based on the real-time coal calorific value obtained by the dynamic method of unit load-pressure model. Aiming at the characteristics of the dynamic method and the static method which is based on the thermodynamic calculation of the pulverizing system combined with the smoke composition analysis, the real-time and static accuracy of the method are complementary. By using the real-time operation data of the unit, the integrated calorific signal with static accuracy and dynamic error less than 4% is obtained, which can meet the practical requirements of engineering.
【学位授予单位】:华北电力大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:TM621;TN713
【参考文献】
相关期刊论文 前10条
1 郝晓辉;刘鑫屏;边防;张全;;基于卡尔曼滤波的燃煤发热量动态软测量方法[J];热力发电;2016年10期
2 郝晓辉;刘鑫屏;洪雨楠;;煤发热量实时校正方法研究[J];电力科学与工程;2016年05期
3 卞和营;方彦军;;基于支持向量回归的飞灰含碳量软测量[J];热力发电;2014年10期
4 田娅菲;赵文杰;田岚;;火电机组快速响应负荷指令的优化设计[J];自动化与仪表;2014年01期
5 叶学民;王佳;李春曦;;基于熵分析的新能源集成火电机组减排性能研究[J];中国电机工程学报;2013年S1期
6 王琪;刘吉臻;刘鑫屏;田亮;;2种煤发热量软测量方法对比分析及改进方案[J];中国电力;2012年03期
7 刘长良;孙晓娇;刘站营;;支持向量机在锅炉飞灰含碳量软测量中的应用[J];电力科学与工程;2010年01期
8 张贵炜;鲍琳;李奇伟;;基于信息融合的火电厂飞灰含碳量的软测量建模[J];信息与控制;2009年06期
9 程启明;郭瑞青;杜许峰;郑勇;;火电厂烟气含氧量测量的现状与发展[J];电站系统工程;2008年06期
10 刘鑫屏;田亮;曾德良;刘吉臻;;基于机组负荷-压力动态模型的燃煤发热量实时计算方法[J];动力工程;2008年01期
相关博士学位论文 前3条
1 曲亚鑫;基于历史数据的偏最小二乘建模方法研究与应用[D];华北电力大学;2012年
2 朱红路;热工信号自适应滤波及其在建模与控制中的应用[D];华北电力大学(北京);2010年
3 赵征;基于信息融合的锅炉燃烧状态参数检测技术研究[D];华北电力大学(河北);2007年
相关硕士学位论文 前6条
1 洪博;大型火电机组负荷系统的建模与优化控制策略研究[D];华北电力大学;2015年
2 杨丹;卡尔曼滤波器设计及其应用研究[D];湘潭大学;2014年
3 武现聪;基于状态观测器的热工参数软测量方法研究[D];华北电力大学;2014年
4 冯祥凯;火电机组机炉协调控制系统研究与分析[D];华北电力大学;2012年
5 邱凤云;Kalman滤波理论及其在通信与信号处理中的应用[D];山东大学;2008年
6 李大威;卡尔曼滤波在INS/GPS组合导航中的应用研究[D];中北大学;2006年
,本文编号:1671168
本文链接:https://www.wllwen.com/kejilunwen/dianzigongchenglunwen/1671168.html