大失准角情形下UKF与CKF的比较研究
发布时间:2018-03-28 23:07
本文选题:UKF 切入点:CKF 出处:《电光与控制》2017年09期
【摘要】:扼要介绍了UKF和CKF滤波算法,分析总结了两种滤波算法的异同,并基于蒙特卡罗仿真试验,对大方位失准角情形下UKF滤波算法和CKF滤波算法的应用特性进行了对比、分析和总结,指出了UKF滤波算法对角运动和线运动均敏感,角运动和线运动方向的激励均可以加速其收敛,而CKF滤波算法对角运动不敏感,但对线运动敏感,角运动方向的激励无助于其对准精度的提高,而线运动方向的激励可加速其收敛,且收敛精度随激励效果的加强而提高的特性,为该种情形下对准技术的工程化实现提供了针对性建议。
[Abstract]:This paper briefly introduces UKF and CKF filtering algorithms, analyzes and summarizes the similarities and differences of the two filtering algorithms, and compares the application characteristics of UKF filtering algorithm and CKF filtering algorithm in the case of large azimuth misalignment based on Monte Carlo simulation. It is pointed out that the UKF filtering algorithm is sensitive to the angular motion and the linear motion, and the excitation of the angular motion and the direction of the linear motion can accelerate its convergence, while the CKF filtering algorithm is not sensitive to the angular motion, but sensitive to the linear motion. The direction of angular motion does not help to improve the alignment accuracy, while the excitation of the direction of linear motion accelerates its convergence, and the convergence accuracy increases with the enhancement of the effect of excitation. Some suggestions are provided for the engineering realization of alignment technology in this case.
【作者单位】: 海军航空大学青岛校区;中国人民解放军92514部队;山东省产品质量检验研究院;
【分类号】:TN713
,
本文编号:1678457
本文链接:https://www.wllwen.com/kejilunwen/dianzigongchenglunwen/1678457.html