高速高精度宏微双驱动运动平台结构优化设计
本文选题:宏微运动平台 切入点:有限元分析 出处:《广东工业大学》2015年硕士论文
【摘要】:大行程高速高加速度精密定位技术是微电子制造、超精密加工、精密测量等领域快速发展的基础。在芯片封装行业,随着芯片引脚间距的减小及生产效率要求的提高,对封装设备的定位精度、速度和加速度提出很高的要求。超精密加工行业,由于有些精密零件的尺寸较大,要求加工设备在具备精密定位能力的同时还要有足够的行程。因此,开展大行程、高速、高加速度、精密定位平台的研究具有重大的理论和现实意义。课题基于宏微双驱动技术搭建了大行程、高速、高定位精度的一维运动平台。通过直线电机实现大行程的要求,精密海德汉光栅测量宏动的位移误差,压电陶瓷驱动器驱动柔性铰链平台补偿位移误差实现平台的高精度定位。宏微双驱动一维运动平台机械结构主要包括五个部分:直线电机、连接架、柔性铰链平台、光栅尺、导轨。宏微双驱动平台以高速、高加速度重复定位时,宏动平台质量越轻产生的残余振动越小。基于拓扑优化设计对连接架和柔性铰链平台进行材料去除,达到轻量化的目标。在保证连接架刚度、应力、一阶固有频率情况下对连接架进行尺寸优化,得到最优尺寸。运动平台的微动部分采用具有无间隙、无噪音、无需润滑、高分辨率等特点的柔性铰链机构。通过MATLAB计算得到满足系统刚度和强度的柔性铰链尺寸参数。基于有限元软件ANSYS的拓扑形状优化和尺寸优化确定满足刚度、强度和固有频率要求的微动平台结构。采用有限元热分析方法,构建宏微运动平台的热-结构耦合分析模型,对宏微运动平台的连接架及柔性铰链平台开展热特性分析。耦合场分析结果发现,相比无温度场载荷条件,连接架及柔性铰链平台的变形量增大。基于灵敏度分析对运动平台的关键部件连接架进行尺寸优化。补充了传统的仅考虑结构载荷影响的方法,为运动平台的超精密定位和稳定运行提供更为全面的分析。文章最后使用Analyzer AZ804一B测试仪对所设计的一维宏微双驱动平台整机进行了性能验证。主要验证了平台宏动部分的速度跟随性、微动部分的速度跟随性、平台加速度跟随性、微动平台振动幅值特性等。
[Abstract]:High-speed and high-acceleration precision positioning technology is the basis of rapid development in the fields of microelectronics manufacturing, ultra-precision machining, precision measurement and so on. In the chip packaging industry, with the decrease of pin spacing and the improvement of production efficiency, The positioning accuracy, speed and acceleration of packaging equipment are very high. Because some precision parts are larger in size, it is required that the machining equipment should have enough stroke while having precision positioning ability. The research of large stroke, high speed, high acceleration and precision positioning platform is of great theoretical and practical significance. One dimensional motion platform with high positioning accuracy. The precision Hyderham grating is used to measure the displacement error of macro motion by realizing the requirement of large stroke by linear motor. Piezoelectric actuators drive flexure hinge platform to compensate displacement error to achieve high precision positioning. The mechanical structure of one dimensional motion platform with macro and micro dual drive consists of five parts: linear motor, connecting frame, flexible hinge platform, grating ruler, and so on. Guideway. The lighter the mass of the platform, the smaller the residual vibration, when the platform is positioned at high speed and high acceleration. The material is removed from the connecting frame and the flexure hinge platform based on the topology optimization design. To achieve the goal of lightweight. Under the condition of ensuring the stiffness, stress and natural frequency of the connecting frame, optimize the dimension of the connecting frame and obtain the optimum size. The fretting part of the motion platform has no clearance, no noise, no lubrication, Flexure hinge mechanism with high resolution and other characteristics. The dimension parameters of flexure hinge satisfying the stiffness and strength of the system are obtained by MATLAB calculation. The satisfying stiffness is determined by topological shape optimization and dimension optimization based on the finite element software ANSYS. The finite element thermal analysis method is used to construct the thermal-structure coupling analysis model of macro and micro motion platform. The thermal characteristics of the connecting frame and the flexible hinge platform of the macro and micro motion platform are analyzed. The results of coupling field analysis show that compared with the conditions of no temperature field load, The deformation of the connecting frame and the flexible hinge platform is increased. Based on the sensitivity analysis, the dimensions of the connecting frame of the key components of the platform are optimized, which complements the traditional method which only considers the influence of the structural load. This paper provides a more comprehensive analysis for the ultra-precision positioning and stable operation of the motion platform. Finally, the performance of the designed one-dimensional macro and micro dual drive platform is verified by using Analyzer AZ804 B tester. The platform is mainly verified. The velocity following of the macro part, The velocity following property of the fretting part, the acceleration following property of the platform, the amplitude characteristic of the vibration of the fretting platform, etc.
【学位授予单位】:广东工业大学
【学位级别】:硕士
【学位授予年份】:2015
【分类号】:TN405
【相似文献】
相关期刊论文 前10条
1 李小萍;盛景泰;;基于空中运动平台的雷达任务系统可靠性研究[J];电子产品可靠性与环境试验;2011年03期
2 董永谦;狄希远;张志耀;田芳;;高速精密运动平台研制[J];电子工艺技术;2011年03期
3 杨国哲,王立平,郁鼎文,黄欢;三坐标精密运动平台底座的设计[J];机械工程师;2005年07期
4 王贵平;董永谦;田芳;狄希远;;生瓷带打孔机运动平台的设计[J];电子工艺技术;2009年02期
5 纪大壮;杨小雷;王国宏;李胜军;詹毅;;基于改进粒子滤波的运动平台定位算法[J];系统仿真学报;2010年09期
6 杨国哲;王立平;郁鼎文;崔巍;;三维微细电火花加工运动平台的误差模型建立[J];机械工程师;2006年06期
7 杨一博;尹文生;朱煜;王春洪;;粗精动超精密运动平台系统建模与分析研究[J];中国机械工程;2008年23期
8 孙浩;王程;王润生;;基于多传感器融合的运动平台运动目标检测[J];计算机应用;2008年04期
9 赵岐诚;江晶;盖旭刚;;空中多运动平台多传感器目标跟踪[J];现代雷达;2009年10期
10 周文宝;;超大行程机器人运动平台的设计[J];现代制造;2009年14期
相关会议论文 前8条
1 代小林;丛大成;韩俊伟;李洪人;;基于凯恩方程的并联运动平台多刚体动力学建模[A];第五届全国流体传动与控制学术会议暨2008年中国航空学会液压与气动学术会议论文集[C];2008年
2 由俊生;由勇;许叙遥;马月欣;;持续载荷飞行仿真运动平台的预测控制研究[A];中国航空学会控制与应用第十二届学术年会论文集[C];2006年
3 韩e,
本文编号:1688733
本文链接:https://www.wllwen.com/kejilunwen/dianzigongchenglunwen/1688733.html