大功率IGBT驱动技术研究
发布时间:2018-04-16 20:28
本文选题:IGBT + 大功率 ; 参考:《东南大学》2015年硕士论文
【摘要】:大功率IGBT在电力电子装置中需承受极高的电压、电流应力及短路故障等恶劣的工作环境,IGBT驱动器作为连接控制电路和功率电路的桥梁,直接决定了IGBT的运行性能,通过高效可靠的IGBT驱动器能使大功率IGBT运行在优化的工作状态并能处理各种故障状态。经过研究分析IGBT内部结构、工作特性及失效机理,提出了大功率IGBT驱动器需满足的驱动条件及保护要求。本文分别基于模拟电路和数字处理器FPGA分别设计了针对IHM 130 X 140mm和Prime PACKTM封装的即插即用的大功率IGBT驱动器。论文首先分析了IGBT内部结构及载流子运动特点,并与外部工作特性相结合,进行了IGBT失效机理研究。研究指出通过驱动电压的选择可控制IGBT的工作区,通过门极电阻的选择可控制IGBT开关速度;进而提出基于反馈思想抑制关断尖峰电压的保护控制策略,设计了有源钳位与di/dt反馈电路,并优化了反馈回路关键参数,同时采用基于恒流源的UCE检测电路与软关断电路有效的防止了大功率IGBT由于短路故障引起热击穿现象的发生。论文基于模拟电路设计了针对IHM 130 X 140mm封装的单管大功率IGBT驱动器,包括DC/DC隔离辅助电源、信号调理电路、辅助源欠压保护、基于UCE检测的短路保护电路、有源钳位电路和di/dt反馈电路等部分。建立了双脉冲实验平台与半桥实验平台,对驱动板在各种工况下进行了测试,验证了所设计的驱动板的有效性及可靠性。论文继续研究了目前新能源并网场合大量应用的Prime PACKTM封装半桥大功率IGBT驱动器,针对采用模拟电路的驱动器存在的不足,论文采用以FPGA为驱动器系统信号处理的核心,能方便和准确地安排驱动与保护信号时序,有效的解决模拟电路中控制电路复杂和不一致等缺陷。论文提出了一种双N-MOSFET推动级电路结构,并与软关断电路配合,在短路故障时导通,能够极大的减小短路保护时尖峰电压值。最后,通过双脉冲实验平台进行有源钳位及短路保护验证,在半桥实验平台模拟不同开关频率下高电压、大电流应用,实验结果表明,基于FPGA的半桥型驱动器响应速度快,具备完善的保护功能,能够应用于不同的工业应用场合。
[Abstract]:The high power IGBT driver is used as a bridge to connect the control circuit and power circuit, which directly determines the operation performance of the IGBT, which has to bear the extremely high voltage, current stress and short circuit fault in the power electronic device.The high power IGBT driver can make the high power IGBT run in the optimized working state and deal with all kinds of fault states.The internal structure, working characteristics and failure mechanism of IGBT are analyzed, and the driving conditions and protection requirements of high power IGBT driver are put forward.In this paper, a plug and play high power IGBT driver for IHM 130X 140mm and Prime PACKTM encapsulation is designed based on analog circuit and digital processor FPGA, respectively.Firstly, the internal structure and carrier motion characteristics of IGBT are analyzed, and the failure mechanism of IGBT is studied by combining with external working characteristics.It is pointed out that the operation area of IGBT can be controlled by the choice of driving voltage, the switch speed of IGBT can be controlled by the choice of gate resistance, and the protection control strategy based on feedback to suppress the off peak voltage is put forward.The active clamp and di/dt feedback circuit are designed, and the key parameters of the feedback circuit are optimized. At the same time, the UCE detection circuit based on the constant current source and the soft off circuit are used to effectively prevent the thermal breakdown caused by the short circuit fault of the high power IGBT.Based on analog circuit, a single transistor high power IGBT driver is designed for IHM 130X 140mm package, including DC/DC isolation auxiliary power supply, signal conditioning circuit, auxiliary source undervoltage protection, short circuit protection circuit based on UCE detection.Active clamp circuit and di/dt feedback circuit.The dual-pulse experimental platform and half-bridge experimental platform are established, and the driving plate is tested under various working conditions, and the validity and reliability of the designed drive plate are verified.In this paper, we continue to study the half-bridge high-power IGBT driver encapsulated by Prime PACKTM, which is widely used in the field of new energy connection. Aiming at the deficiency of the driver using analog circuit, the paper uses FPGA as the core of signal processing in the driver system.It can arrange the timing of driving and protecting signals conveniently and accurately, and effectively solve the problems of complex and inconsistent control circuits in analog circuits.In this paper, a dual N-MOSFET boost circuit structure is proposed, which can greatly reduce the peak voltage during short circuit protection by combining with soft turn-off circuit to switch on in short circuit fault.Finally, the active clamp and short circuit protection are verified by dual pulse experimental platform. The high voltage and high current applications are simulated on the half-bridge experimental platform at different switching frequencies. The experimental results show that the response speed of the half-bridge driver based on FPGA is fast.Has perfect protection function, can be applied to different industrial applications.
【学位授予单位】:东南大学
【学位级别】:硕士
【学位授予年份】:2015
【分类号】:TN322.8
【相似文献】
相关期刊论文 前6条
1 Nelson Nguyen;Anritsu Corp;Morgan Hill;;保护FPGA不受尖峰电压影响的电路[J];电子设计技术;1998年12期
2 马瑞卿,薛忠,罗鹰;尖峰电压发生器的单片机控制[J];电力电子技术;2000年02期
3 徐德高,庞大伟;半桥式脉宽调制变换器高压开关晶体管集电极尖峰电压分析[J];计算机学报;1979年03期
4 张立;吴爱国;李云德;王江;;GTO阳极尖峰电压产生和变化的机理[J];科学通报;1993年12期
5 倪本来;;电磁脉冲干扰(EMPI)的防护[J];自动化与仪表;1989年02期
6 ;[J];;年期
相关硕士学位论文 前2条
1 兰科;大功率IGBT驱动技术研究[D];东南大学;2015年
2 张超;28V机载用电设备供电特性测试系统的研制[D];南京航空航天大学;2012年
,本文编号:1760459
本文链接:https://www.wllwen.com/kejilunwen/dianzigongchenglunwen/1760459.html