电磁场的集成光波导探测技术
本文选题:电场传感器 + 磁场传感器 ; 参考:《电子科技大学》2017年硕士论文
【摘要】:随着电子技术的快速发展,集成光波导电磁场传感器引起了越来越广泛的关注。因其体积小,带宽宽,抗电磁干扰等优势,因此在相关科学技术领域都得到了应用,特别是在电磁兼容技术方向。本文基于集成光学的基本原理,使用铌酸锂作为材料,采用非对称MZI波导结构,设计制作反射式集成光波导电磁场传感器,并对其进行测试、校准。主要工作如下:(一)本文首先介绍基于铌酸锂电光效应的MZI型集成电光强度调制器和集成光波导电磁场传感器的原理。传感器的线性工作点的稳定对传感器的各性能指标起到关键作用,本文采用波长调谐的方式对工作点进行控制,减小传感器的工作点的漂移。(二)设计器件电极结构。反射式集成光波导电场传感器采用锥形偶极子电极结构,以求扩大带宽,改变结构参数进行数值仿真,由仿真结果得到最佳结构参数。反射式集成光波导磁场传感器则采用双负载环形天线结构,同样通过仿真结果分析获得最佳结构尺寸,两种传感器都是基于MZI结构。(三)本文设计反射式非对称MZI集成光波导电磁场传感器,单光路传输,利用保偏环形器来连接激光光源,分路器和反射式波导传感器,结构更加紧凑,探头体积减小,更易于装配使用。(四)将传感测量系统集成化,对电磁场传感器进行性能测试实验。由于EDFA的增益放大特性,因此本论文采用EDFA来作为光探测器的前置放大器,以求增大器件信噪比,提高传感器的灵敏度。基于仿真结果设计反射式非对称MZI型集成光波导电场传感器,搭建电场传感系统,对传感器的频率响应和线性动态等进行测试。将制作完成好的集成光波导电场传感器放置在TEM cell内,在250 kHz~400 MHz范围内的进行频率响应测试,保持TEM cell内电场强度为11.2 V/m不变,测试结果表明电场传感器的频率响应较为平坦。接着在0.044 V/m~7.9 V/m范围内,对电场传感器线的性动态进行测试实验,此时频率f(28)100 MHz,由测试结果可知传感器的线性动态效果较好。接着搭建高斯脉冲发生装置,用电场传感器探测高斯脉冲信号,实验结果表明电场传感器能够较准确地还原被测电场信号。基于仿真结果设计反射式非对称MZI型集成光波导磁场传感器,并对磁场传感器的频率响应和线性动态等进行测试实验。保持TEM cell内磁场强度为0.03 A/m不变,在30 MHz~400 MHz范围内,对器件的频率响应进行测试,由实验可知其频率响应较为平坦。接着在0.003 A/m~0.02 A/m范围内,对磁场传感器进行线性动态测试实验,此时频率f(28)200 MHz,由测试结果可知,磁场传感器的线性动态效果较好。当传感系统的信噪比为3 dB时,高量程反射式集成光波导电场传感器的最小可探测电场强度为0.35 V/m,低量程反射式集成光波导电场传感器的最小可探测电场强度为0.044 V/m。高量程反射式集成光波导电场传感器的最小可探测脉冲场强度为6 KV/m,低量程反射式集成光波导电场传感器的最小可探测脉冲场强度为0.35 KV/m。低量程反射式集成光波导磁场传感器的最小可探测磁场强度为0.003A/m,高量程反射式集成光波导磁场传感器的最小可探测磁场强度为0.005 A/m。
[Abstract]:With the rapid development of electronic technology, integrated optical wave conducting magnetic field sensor has attracted more and more attention. Because of its advantages of small size, wide bandwidth and anti electromagnetic interference, it has been applied in the field of related science and technology, especially in the direction of electromagnetic compatibility. This paper is based on the basic principle of integrated optics, using lithium niobate as a basic principle. For material, using asymmetric MZI waveguide structure, a reflective integrated light wave conductive magnetic field sensor is designed and fabricated and tested. The main work is as follows: firstly, the principle of MZI integrated electro-optic intensity modulator based on the electrooptic effect of lithium niobate and the principle of integrated light wave conducting magnetic field sensor are first introduced. The stability of the work point plays a key role in the performance index of the sensor. In this paper, the working point is controlled by wavelength tuning to reduce the drift of the working point of the sensor. (two) the structure of the electrode is designed. The electric field sensor of the reflective integrated optical waveguide adopts the conical dipole electrode structure, in order to enlarge the bandwidth and change the structure parameters. The optimal structure parameters are obtained from the simulation results. The reflective integrated optical waveguide magnetic field sensor uses a double loaded ring antenna structure, and the optimal structure size is obtained by the simulation results. The two sensors are based on the MZI structure. (three) the reflective asymmetric MZI integrated light wave conductive magnetic field sensor is designed in this paper. Single optical path transmission, using the polarization maintaining ring device to connect the laser light source, the shunt and the reflective waveguide sensor, the structure is more compact, the probe volume decreases, and the assembly is easier to use. (four) the sensor measurement system is integrated and the performance test of the electromagnetic field sensor is tested. Because of the gain amplification characteristic of EDFA, this paper uses EDFA As a preamplifier of the photodetector, in order to increase the signal to noise ratio of the device and improve the sensitivity of the sensor, based on the simulation results, a reflective asymmetric MZI type integrated optical waveguide electric field sensor is designed, and an electric field sensor system is built to test the frequency response and linear dynamic of the sensor. The completed integrated optical waveguide electric field will be made. The sensor is placed in TEM cell, the frequency response test within the range of 250 kHz~400 MHz is carried out, and the electric field intensity in TEM cell is kept unchanged at 11.2 V/m. The test results show that the frequency response of the electric field sensor is flat. Then the test experiment on the sexual dynamics of the electric field sensor line is carried out in the range of 0.044 V/m~7.9 V/m, and the frequency f (28) 1 is at this time. 00 MHz, from the test results, the linear dynamic effect of the sensor is better. Then the Gauss pulse generator is set up and the Gauss pulse signal is detected by the electric field sensor. The experimental results show that the electric field sensor can restore the electric field signal more accurately. Based on the simulation results, the asymmetric MZI type integrated optical waveguide magnetic field sensor is designed. The frequency response and linear dynamics of the magnetic field sensor are tested. The magnetic field intensity in TEM cell is 0.03 A/m constant and the frequency response of the device is tested in the range of 30 MHz~400 MHz. The frequency response is flat by the experiment. Then the magnetic field sensor is linearly moved in the range of 0.003 A/m~ 0.02 A/m. The frequency f (28) 200 MHz at this time shows that the linear dynamic effect of the magnetic field sensor is better. When the signal to noise ratio of the sensing system is 3 dB, the minimum detectable electric field intensity of the high range reflective integrated optical waveguide electric field sensor is 0.35 V/m, and the minimum exploration of the low range reflective integrated optical waveguide electric field sensor can be found. The minimum detectable pulse field intensity of the electric field sensor of 0.044 V/m. high range reflective integrated optical waveguide is 6 KV/m. The minimum detectable pulse field intensity of the low range reflective integrated optical waveguide electric field sensor is 0.35 KV/m. and the minimum detectable magnetic field intensity of the reflective integrated optical waveguide magnetic field sensor is 0.003. A/m, the minimum detectable magnetic field intensity of the high range reflective integrated waveguide magnetic field sensor is 0.005 A/m..
【学位授予单位】:电子科技大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:TP212;TN252
【参考文献】
相关期刊论文 前7条
1 陈福深;陶厚超;孙豹;;带双负载环形天线的集成光波导磁场探测器[J];电子科技大学学报;2009年01期
2 刘胜涛 ,尹宜柱;对信息技术设备电磁兼容技术的分析[J];电子质量;2004年04期
3 涂有瑞;飞速发展的磁传感器[J];传感器技术;1999年04期
4 韩秀清;高压空间电场强度的光电测量系统[J];南昌大学学报(工科版);1998年01期
5 黄耀清,郝成宏;以磁致伸缩原理为基础的光纤磁场传感器的最新进展[J];大庆高等专科学校学报;1997年04期
6 李玉善,马少杰,于涛,李永光,李德杰,,多田邦雄;检测汽车点火系的Ti扩散LiNbO_3光波导电场传感器[J];高技术通讯;1995年01期
7 张叔鹏;玉义举;;用超级宽带TEM小室模拟开阔场地测试,获取电磁发射的数据[J];电子测量技术;1991年01期
相关博士学位论文 前1条
1 张家洪;集成光波导三维脉冲电场传感系统研究[D];电子科技大学;2016年
相关硕士学位论文 前4条
1 王磊;铌酸锂光波导正弦波电场传感器的研究[D];电子科技大学;2016年
2 李万军;集成光波导脉冲电场传感器直流漂移控制技术研究[D];电子科技大学;2014年
3 陈实;基于电磁场理论的分段电极电场传感器的特性研究[D];电子科技大学;2010年
4 孙豹;宽带集成光波导射频全向电场传感器的研究[D];电子科技大学;2006年
本文编号:1845611
本文链接:https://www.wllwen.com/kejilunwen/dianzigongchenglunwen/1845611.html