微纳光纤谐振结构及其应用的理论和实验研究
发布时间:2018-06-06 19:23
本文选题:微纳光纤 + 光纤光栅 ; 参考:《华中科技大学》2015年硕士论文
【摘要】:随着元件设计理论和制备工艺技术的不断完善,光学设备越来越趋向于微型化和模块化。微纳光纤有着尺寸小、低损耗、倏逝场传输、柔韧性好等独特优势,已成为如今光学领域的一大研究热点。另一方面,光纤传感技术凭借其高灵敏度、抗电磁干扰、易于实现多点复用等突出优点,逐渐成为科研与应用领域的热点课题。其中光纤光栅、光纤干涉仪以及多波长光纤激光器等诸多光学器件以其独特的结构特性与实际应用潜力在光纤传感网络中得到了较多的关注。本论文针对下一代大容量、长距离、高精度光纤传感网络中的高灵敏度传感器、高性能传感光源等实际应用需求,设计了多种基于微纳光纤的法布里-珀罗干涉型谐振结构,深入研究了其光学特性,并实现了基于微纳谐振结构的滤波器、折射率/温度传感器和可调谐多波长激光器等关键器件。本论文的主要研究工作包括以下几个方面:(1)概括了微纳光纤的发展史,并详细介绍了微纳光纤在光学传感和光纤激光器领域的典型应用。建立微纳光纤的波导模型,对其结构特性、光学特性及传感特性进行了详细的模拟仿真分析,并就其制备工艺进行了深入探讨和实验研究。(2)提出了一种单模光纤布拉格光栅-微纳光纤-单模光纤布拉格光栅(SMFBG-MNF-SMFBG)型谐振结构,该谐振结构兼具光纤光栅和微纳光纤的光学特性。进行了数学建模,并通过仿真就不同结构参数对其光学特性的影响做了详细分析。针对微米布拉格光栅(MNFBG)制备工艺复杂、效率低等问题,创新性地提出了“SMFBG-MNF-SMFBG”的微法布里-珀罗干涉仪(MFPI)谐振结构,以及“单SMFBG刻写——中间点熔融拉锥”的简单制备工艺,得到了高消光比、平坦密集的宽带滤波谱。(3)进行了基于上述MFPI谐振结构的折射率和温度的单参量传感实验。从理论上全面分析了该结构的折射率和温度敏感特性,并通过分别追踪该MFPI谐振波长及反射带中心波长的漂移,实现了折射率和温度灵敏度分别为220.1nm/RIU和11.9pm/℃的单参量传感。进一步地,充分考虑到MFPI谐振波长对温度交叉敏感的影响,再结合MFPI谐振波长及其反射带中心波长对折射率和温度变化的不同响应,实现了该MFPI谐振结构的折射率/温度高精度双参量传感。(4)提出了一种级联双萨格奈克(Sagnac)环型MFPI谐振结构,该结构可集成于单根微纳光纤上。根据光场耦合理论建立了该结构的等效模型,并就不同结构参数对其反射光谱性能的影响做出了全面的仿真分析。创新性提出了“火焰加热拉锥普通光纤——弯曲扭转微纳光纤”的制备技术及对该MFPI结构进行“微调腔长从而改变其滤波特性”的简单调谐方法,得到高消光比、宽带平坦、易调谐的梳状滤波谱。(5)搭建了基于上述MFPI谐振结构的多波长激光器,实现了3dB带宽内42个多波长的稳定激射,室温下1小时内各波长无明显漂移,峰值功率波动不超过0.602dB。进一步地,将该MFPI滤波结构应用到可调谐多波长激光器中,通过改变MFPI结构的腔长,获得了输出激光波长个数从65到21,激光波长间隔从0.065nm到0.173nm的可调谐输出;稳定性测试实验表明,室温下该可调谐多波长激光器稳定性良好,其1小时内最大功率波动仅为0.46dB。
[Abstract]:With the continuous improvement of the theory of component design and preparation technology, optical devices tend to be miniaturized and modularized. Micro nano fiber has the unique advantages such as small size, low loss, evanescent field transmission, good flexibility and so on. It has become a hot research focus in the field of optics. On the other hand, fiber sensing technology relies on its high sensitivity. Anti electromagnetic interference, easy to achieve multi point reuse and other outstanding advantages, gradually become a hot topic in the field of scientific research and application, among which optical fiber Bragg grating, fiber interferometer and multi wavelength fiber laser have attracted more attention in optical fiber sensing network with its unique structural characteristics and practical application potential. For the next generation of high-capacity, long distance, high precision optical fiber sensor networks with high sensitivity sensors and high performance sensing light sources, a variety of Fabri Perot interferometric resonant structures based on micro nano fiber are designed, and their optical properties are studied. The filter based on micro nano resonant structure, refractive index / temperature are realized. The main research work of this thesis is as follows: (1) the development history of micro nano fiber is summarized, and the typical applications of micro nano optical fiber in optical sensing and fiber laser are introduced in detail. A detailed simulation and simulation analysis of the properties and sensing characteristics is carried out, and the preparation process is deeply discussed and experimentally studied. (2) a single mode fiber Prague grating micro nano fiber single mode fiber Prague grating (SMFBG-MNF-SMFBG) resonant structure is proposed, which has the optical properties of both fiber Bragg grating and micro nano fiber. The effects of different structural parameters on the optical properties of the micrometer Prague grating (MNFBG) are analyzed in detail. In view of the complex preparation technology and low efficiency of the micron Prague grating, the "SMFBG-MNF-SMFBG" micro Fabri Perot interferometer (MFPI) resonant structure is innovatively proposed, and the "single SMFBG writing" is used. The simple preparation process of the inter point melting taper has obtained a high extinction ratio and a flat and dense broadband filter spectrum. (3) a single parameter sensing experiment based on the refractive index and temperature of the MFPI resonant structure above is carried out. The refractive index and temperature sensitivity of the structure are analyzed theoretically, and the resonant wavelength and inverse of the MFPI are traced and reversed respectively. The drift of the center wavelength of the ejection band has realized the single parameter sensing of the refractive index and the temperature sensitivity of 220.1nm/RIU and 11.9pm/ C, respectively. Further, the effect of the MFPI resonant wavelength on the temperature cross sensitivity is fully taken into account, and the different responses of the resonant wavelength of the MFPI and the central wavelength of the reflector to the change of the ejection rate and temperature are realized, and the M is realized. The refractive index / temperature high precision dual parameter sensing of the FPI resonant structure. (4) a cascade double saggy Nanke (Sagnac) ring type MFPI resonant structure is proposed. This structure can be integrated on single micro nano fiber. Based on the optical field coupling theory, the equivalent model of the structure is established, and the effect of different structural parameters on its reflectance spectrum performance is made. A simple tuning method of "flame heating taper common fiber - bending and torsional micro nano fiber" and a simple tuning method for the MFPI structure to "adjust the length of the cavity to change its filtering characteristics" are innovatively proposed, and the comb filter spectrum with high extinction ratio, wide band and easy harmonics is obtained. (5) based on the above MFPI The multi wavelength laser with resonant structure has achieved 42 multiple wavelengths of stable lasing in the 3dB bandwidth. There is no obvious drift at all wavelengths in 1 hours at room temperature. The peak power fluctuation does not exceed 0.602dB. further. The MFPI filter structure is applied to the tunable multi wavelength laser. The output laser wavelength is obtained by changing the length of the cavity of the MFPI structure. The number of laser wavelength interval from 0.065nm to 0.173nm is from 65 to 21, and the stability test shows that the tunable multi wavelength laser is stable at room temperature and the maximum power fluctuation within 1 hours is only 0.46dB.
【学位授予单位】:华中科技大学
【学位级别】:硕士
【学位授予年份】:2015
【分类号】:TN253
【参考文献】
相关期刊论文 前2条
1 任文华;陶沛琳;谭中伟;刘艳;简水生;;Theoretical and experimental investigation of the mode-spacing of fiber Bragg grating Fabry-Perot cavity[J];Chinese Optics Letters;2009年09期
2 信思金,柴伟;光纤Bragg光栅温度传感器封装方法研究[J];传感器技术;2004年04期
,本文编号:1987838
本文链接:https://www.wllwen.com/kejilunwen/dianzigongchenglunwen/1987838.html