GaN基异质结构及HEMT器件制备研究
本文选题:氮化镓 + 异质结 ; 参考:《西安邮电大学》2017年硕士论文
【摘要】:因为氮化镓(GaN)基材料禁带宽度大、电子饱和漂移速度高、耐高压、抗辐照、容易形成异质结构、具有大的自发和压电极化产生的高二维电子气(2DEG)浓度,故特别适合制备新一代高频大功率电子器件和高速低耗损电力电子器件,在军用和民用领域具有极为广阔的应用前景,是当今世界上半导体领域的研究热点。本论文重点围绕GaN基异质结构和高电子迁移率晶体管(HEMT)器件存在的部分问题,开展了 N面极性GaN/AlxGa1-xN/GaN异质结构的理论研究,铁(Fe)掺杂高阻GaN材料和GaN基HEMT结构材料的金属有机物化学气相沉积(MOCVD)生长研究,以及GaN基HEMT器件的制备及电流崩塌研究。所取得的主要研究结果如下:1.首次系统研究了 N面极性GaN/AllxGa1-xN/GaN异质结构中2DEG和二维空穴气(2DHG)浓度随结构参数的变化规律,为新型N面极性GaN/AlxGa1-xN/GaN HEMT器件的设计和分析提供了有重要参考价值的理论指导。通过薛定谔方程和泊松方程的自洽求解,系统研究了 N面极性GaN/AlxGa1-xN/GaN异质结构中2DEG和2DHG浓度随GaN帽层厚度、AlGaN背势垒层厚度和铝(Al)组分x、AlGaN背势垒层和下GaN层中n型掺杂浓度的变化规律。对于非故意掺杂的N面极性GaN/AllxGai-xN/GaN异质结构,研究发现:随GaN帽层厚度的增加,上界面处的2DEG浓度从无到有,逐渐增加;下界面处的2DHG浓度略微下降,直到趋于饱和。随着AlxGa1-xN背势垒层厚度的增加,上界面处的2DEG和下界面处的2DHG浓度均增加。随着AlxGai-xN背势垒层中Al组分x的增加,上界面处的2DEG和下界面处的2DHG浓度均增加。对于AlxGa1-xN背势垒层和下GaN层中故意掺入n型杂质的N面极性GaN/AlxGa1-xN/GaN异质结构,研究发现:对AlxGa1-xN背势垒层进行n型掺杂,可形成只在上界面处存在2DEG,在下界面处不存在2DHG的异质结构,而且,上界面处的2DEG浓度随AlxGai-xN背势垒层中n型掺杂浓度的增加而增加。对下GaN层进行n型δ掺杂,随着掺杂浓度的增加,下界面处的2DHG浓度会逐渐减少直至消失;存在一个上界面处既没有2DEG、下界面处也没有2DHG的掺杂浓度范围;进一步增加下GaN层n型δ掺杂的浓度,上界面处的2DEG浓度会随着δ掺杂浓度的增加而迅速增加。揭示了 N面极性GaN/AlxGa1-xN/GaN异质结构中上界面处2DEG的四种可能起源。2.研究了铁(Fe)调制掺杂和非故意掺杂GaN高阻缓冲层对HEMT器件性能的影响,发现Fe调制掺杂高阻GaN缓冲层HEMT器件具有更好的可靠性。利用MOCVD技术,生长了具有不同Fe掺杂浓度的GaN缓冲层,研究了 Fe掺杂浓度对GaN缓冲层电阻率、表面形貌和晶体质量的影响。分别通过Fe调制掺杂和非故意掺杂方式,在4英寸蓝宝石衬底上研制出了表面形貌好、电阻率高达107Ω·cm的高阻GaN缓冲层外延材料,并以此为基础研制了 GaN/AlxGa1xN/AlN/GaN HEMT结构材料。Fe调制掺杂高阻GaN缓冲层HEMT结构材料(样品A)的平均方块电阻为348 Ω/sq,2DEG迁移率为2503 cm2/V·s;非故意掺杂高阻GaN缓冲层HEMT结构材料(样品B)的平均方块电阻为373 Ω/sq,2DEG迁移率为1926 cm2/V·s。用样品A和样品B分别研制出了 HEMT器件,其栅长3 μm、栅宽100μm、栅源间距5 μm、栅漏间距20 μm。在脉冲模式下,测量了栅极电压为2 V时,器件的转移特性和栅极漏电流特性,结果表明,Fe调制掺杂高阻GaN缓冲层HEMT具有更高的最大饱和电流密度(395 mA/mm)和更小的栅极漏电流(3.32×10-7A)。另外,在不同栅极电压应力和漏极电压应力作用下,测量了器件的直流输出特性以及转移特性,结果表明,Fe调制掺杂高阻GaN缓冲层HEMT在栅压关断应力下具有更好的可靠性。3.首次提出了源栅双场板GaN/In0.17Al0.83N/AlN/GaNHEMT器件结构。研究了不同偏压应力对无场板、栅场板和源栅双场板GaN/In0.17Al0.83N/AlN/GaNHEMT器件漏极输出电流的影响。结果表明源栅双场板HEMT器件可有效抑制与偏压应力相关的电流崩塌现象。利用MOCVD技术,在2英寸蓝宝石衬底上研制了 GaN/In0.17Al0.83N/AlN/GaN HEMT结构材料,其室温2DEG浓度和迁移率分别为2.432×1013 cm-2和850 cm2/V·s,方块电阻为302 Ω/sq。为了研究不同场板结构对器件漏极电流退化的影响,用上述材料分别研制了无场板(器件A)、只有栅场板(器件B)和具有源栅双场板(器件C)的HEMT器件,并对器件在施加偏压应力前、施加关态和开态应力后的直流特性进行了测试。发现源栅双场板结构可有效降低GaN/In0.17Al0.83N/AlN/GaN HEMT器件的漏极电流退化。在关态应力条件下,测量了上述三种器件在栅压为2 V时的直流输出特性曲线,结果表明源栅双场板器件的漏极电流降低率为3.32%,小于栅场板器件的7.57%和无场板器件的14.63%。三种器件在漏源电压为10 V时的转移特性曲线测试结果表明,在关态应力下,器件A的阈值电压向正电压方向移动,器件B和C的阈值电压无明显变化;在开态应力条件下,器件A的饱和漏极电流和峰值跨导的减小最为明显,器件B次之,器件C最小。实验结果表明,源栅双场板对抑制器件的电流崩塌效应最为有效。
[Abstract]:Since gallium nitride (GaN) based materials have large band gap, high electron saturation drift speed, high pressure resistance and radiation resistance, it is easy to form heterostructures, with high two-dimensional electron gas (2DEG) concentration produced by large spontaneous and piezoelectric polarization, so it is especially suitable for the preparation of new generation high frequency power devices and high speed and low consumption power electronic devices. The civil field has a very wide application prospect. It is a hot topic in the field of semiconductors in the world. This paper focuses on the problems of GaN based heterostructures and high electron mobility transistor (HEMT) devices, and has carried out a theoretical study of N surface polarity GaN/AlxGa1-xN/GaN heterostructures. Iron (Fe) doped high resistance GaN materials and GaN The study on the growth of metal organic chemical vapor deposition (MOCVD), the preparation of GaN based HEMT devices and the current collapse study of GaN based HEMT devices. The main results obtained are as follows: 1. the changes of the concentration of 2DEG and two-dimensional air (2DHG) in the N surface polar GaN/AllxGa1-xN/GaN heterostructure with the structural parameters were studied for the first time. The theoretical guidance for the design and analysis of a new N surface polar GaN/AlxGa1-xN/GaN HEMT device is provided. Through the self consistent solution of the Schrodinger equation and Poisson equation, the 2DEG and 2DHG concentrations in N surface polar GaN/AlxGa1-xN/GaN heterostructures are studied with GaN cap thickness, AlGaN back barrier thickness and X of Al (Al) components. The variation of N type doping concentration in the lGaN back barrier layer and the lower GaN layer. For the unintentionally doped N surface polar GaN/AllxGai-xN/GaN heterostructure, it is found that the concentration of 2DEG at the upper interface increases gradually with the increase of the thickness of the GaN cap, and the concentration of 2DHG at the lower interface decreases slightly until it tends to saturation. With the AlxGa1-xN back potential With the increase of the thickness of the barrier layer, the concentration of 2DHG at the 2DEG and the lower interface at the upper interface increases. With the increase of Al component X in the AlxGai-xN back barrier layer, the 2DEG and the 2DHG concentration at the lower interface are all increased. For the AlxGa1-xN back barrier layer and the lower GaN layer, the N surface polar GaN/AlxGa1-xN/GaN heterostructure, which is deliberately doped with N type impurities, is studied. It is found that N type doping on the AlxGa1-xN back barrier layer can form 2DEG only at the upper interface, and there is no 2DHG heterostructure at the lower interface. Moreover, the 2DEG concentration at the upper interface increases with the increase of N type doping concentration in the AlxGai-xN back barrier layer. The N type delta doping on the lower GaN layer is 2, with the increase of doping concentration, 2 at the lower interface. The concentration of DHG will gradually decrease and disappear; there is no 2DEG and no 2DHG doping concentration at the upper interface, and the concentration of N delta doping at the lower GaN layer is further increased. The concentration of 2DEG at the upper interface will increase rapidly with the increase of the delta doping concentration. The upper boundary of the N surface polar GaN/AlxGa1-xN/GaN heterostructure is revealed. Four possible origins of 2DEG at the surface.2. studied the effect of iron (Fe) modulation doping and unintentionally doped GaN high resistance buffer layer on the performance of HEMT devices. It was found that Fe modulation doped high resistance GaN buffer layer HEMT device had better reliability. The GaN buffer layer with different Fe doping concentration was grown by MOCVD technology. The influence of the resistivity, surface morphology and crystal quality of the buffer layer. By Fe modulation doping and unintentional doping, a high resistance GaN buffer layer epitaxial material with good surface morphology and a resistivity of 107 Omega cm was developed on the 4 inch sapphire substrate. On this basis, the.Fe modulation mixing of the GaN/AlxGa1xN/AlN/GaN HEMT structure material was developed. The average block resistance of the hybrid high resistance GaN buffer layer HEMT structure material (sample A) is 348 Omega /sq and the 2DEG mobility is 2503 cm2/V. S; the average block resistance of the unintentionally doped high resistance GaN buffer layer HEMT structure material (sample B) is 373 Omega /sq, the 2DEG mobility is 1926. The gate width is 100 mu m, the distance between the gate source is 5 mu and the gate leakage distance is 20 mu m.. Under the pulse mode, the transfer characteristics and gate leakage current characteristics of the device are measured when the gate voltage is 2 V. The results show that the Fe modulation doped high resistance GaN buffer layer HEMT has a higher maximum saturation current density (395 mA/ mm) and a smaller gate leakage current (3.32 x 10-7A). Under the action of the grid voltage stress and the leakage voltage stress, the DC output characteristics and the transfer characteristics of the device are measured. The results show that the Fe modulation doped high resistance GaN buffer layer HEMT has better reliability under the gate pressure off stress..3. first proposed the structure of the source gate double field plate GaN/ In0.17Al0.83N/AlN/GaNHEMT device. The effect of compressive stress on the leakage current of the field plate, gate field plate and source gate double field plate GaN/In0.17Al0.83N/AlN/GaNHEMT device. The results show that the source grid dual field plate HEMT device can effectively suppress the current collapse associated with the bias stress. The GaN/In0.17Al0.83N/AlN/GaN HEMT structure has been developed on 2 inch sapphire substrate by MOCVD technology. The 2DEG concentration and mobility of the material at room temperature are 2.432 x 1013 cm-2 and 850 cm2/V. S respectively, and the block resistance is 302 Omega /sq.. In order to study the effect of different field plate structures on the depolarization of the leakage current of the device, the field plate (device A) is developed with the above materials, only the gate field plate (device B) and the HEMT device with the source gate double field plate (device C) are used. The DC characteristics of the device are tested before applying the bias stress and the closed state and open state stresses are tested. It is found that the source gate double field plate structure can effectively reduce the depolarization of the leakage current of GaN/In0.17Al0.83N/AlN/GaN HEMT device. The output characteristic curve of the three devices under the gate pressure of 2 V is measured under the closed state stress. The leakage current reduction rate of the gate dual field plate device is 3.32%. The test results of the transfer characteristic curves of three kinds of 14.63%. devices less than the gate field plate devices and the 7.57% field free plate devices at the leakage source voltage of 10 V show that the threshold voltage of the device A moves towards the positive voltage side under the closed state stress, and the threshold voltage of the device B and C has no obvious change. Under the open state stress condition, the saturation leakage current and the peak transconductance of the device A are the most obvious, the device is B and the device C is the smallest. The experimental results show that the source grid double field plate is most effective for the current collapse effect of the suppression device.
【学位授予单位】:西安邮电大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:TN386
【相似文献】
相关期刊论文 前10条
1 郑广富;异质结[J];物理;1983年05期
2 郑茳,许居衍;硅异质结和赝异质结双极器件研究进展[J];电子学报;1995年10期
3 郑宜钧;硅基异质结构的研究[J];电子科技导报;1996年09期
4 范希武;与Ⅱ—Ⅵ族有关的异质结的场致发光[J];国外信息显示;1973年Z1期
5 单淑萍;蔡丽清;;异质结领域发展近况[J];科教文汇(上旬刊);2009年12期
6 M .Jedlicka;F.Schauer;林钧天;;摄象管用异质结构靶的物理模型[J];光电子学技术;1987年03期
7 郑东;;几种微波毫米波固态器件的动向[J];电波科学学报;1991年Z1期
8 王华,于军,董小敏,王耘波,周文利,赵建洪,周东祥;Au/PZT/BIT/p-Si异质结的制备与性能研究[J];物理学报;2001年05期
9 李玉兰;;Ga-Al-As激光器的进展[J];稀有金属;1978年01期
10 詹仪;张会云;尚廷义;张玉萍;郑义;;异质结构对多通道滤波器禁带的展宽(英文)[J];量子光学学报;2006年01期
相关会议论文 前10条
1 张闯;闫永丽;赵永生;姚建年;;一维有机异质结构的制备和发光性质调控[A];中国化学会第28届学术年会第4分会场摘要集[C];2012年
2 杨金虎;彭成信;左元慧;祖连海;秦瑶;;纳米复合/异质结构设计及其能量存储与转化研究[A];中国化学会第29届学术年会摘要集——第37分会:能源纳米科学与技术[C];2014年
3 邓新华;刘念华;袁吉仁;;一维单负材料光子晶体异质结构的隧穿模[A];2007年全国博士生学术论坛(材料科学与工程学科)论文集[C];2007年
4 薛飞;孟子晖;齐丰莲;王丰彦;薛敏;;二维胶体晶体异质结构[A];中国化学会第29届学术年会摘要集——第33分会:纳米材料合成与组装[C];2014年
5 秦瑶;祖连海;周燕洁;杨金虎;;准单晶介孔ZnO-Au异质结构的一步法合成及传感应用[A];中国化学会第29届学术年会摘要集——第04分会:纳米生物传感新方法[C];2014年
6 钟明亚;王爽;单桂晔;王国瑞;刘益春;;超声法制备ZnO/Au纳米异质结构及其光学性质的研究[A];第11届全国发光学学术会议论文摘要集[C];2007年
7 李忠辉;李亮;董逊;张岚;姜文海;;3英寸Si基AlGaN/GaN/异质结材料生长[A];第十一届全国MOCVD学术会议论文集[C];2010年
8 张波;丛琴;贺笑春;高明军;马兴法;李光;;低维异质结构功能材料及其有机-无机纳米复合材料的表面、界面特性研究[A];中国化学会第29届学术年会摘要集——第01分会:表面物理化学[C];2014年
9 刘江涛;周云松;王福合;顾本源;;对称性对2D光子晶体异质结导波模的影响[A];大珩先生九十华诞文集暨中国光学学会2004年学术大会论文集[C];2004年
10 王海波;闫东航;;结晶性有机异质结器件[A];2009年全国高分子学术论文报告会论文摘要集(下册)[C];2009年
相关博士学位论文 前10条
1 甄延忠;Mo-O基半导体材料优化制备及光催化氧化脱硫性能的研究[D];西北大学;2015年
2 刘尔富;二维材料及其异质结构的电子输运与器件研究[D];南京大学;2015年
3 朱国兴;基于氧族化合物纳米复合结构的构筑、机理及性能研究[D];南京大学;2010年
4 邹欣伟;Cu_2O基纳米异质结的制备及光催化、光电和气敏性能[D];西北工业大学;2015年
5 石遂兴;Ⅲ-Ⅴ族窄带隙半导体纳米线及纳米线异质结的生长与物性研究[D];中国科学院研究生院(上海技术物理研究所);2015年
6 赵洋;InN薄膜的MBE法生长及其NiO组合异质结器件研究[D];吉林大学;2016年
7 王鹏;Ⅱ-Ⅵ族化合物/TiO_2纳米棒异质结构的制备及其光电化学性质的研究[D];吉林大学;2016年
8 宋昌盛;纳米异质结电子结构特性的第一性原理研究[D];华东师范大学;2016年
9 沈玄;多铁性钙钛矿异质结构的电磁性能和电子显微研究[D];南京大学;2016年
10 杜虹;Cd_(1-x)Zn_xS基纳米异质结光催化剂的合成及其制氢性能研究[D];中国科学技术大学;2016年
相关硕士学位论文 前10条
1 王雅文;近紫外宽带激发LED用荧光材料的研究[D];上海师范大学;2015年
2 范志强;GaN/Si-NPA双纳米异质结的制备及其电学特性研究[D];郑州大学;2015年
3 周璇;g-C_3N_4/Bi_2S_3和Ag@C异质结构的合成及应用[D];苏州大学;2015年
4 杨薇;FeVO_4异质结光催化剂的制备改性及光电性能的研究[D];陕西科技大学;2015年
5 李文婷;部分铋系光催化剂的改性、表征以及光催化性能研究[D];福建师范大学;2015年
6 徐丹丹;多级异质结构MOFs材料的控制生长及性能研究[D];福建师范大学;2015年
7 袁建;二维Bi_2Te_(3-x)Se_x及其与石墨烯的异质结材料制备与表征[D];苏州大学;2015年
8 赵飞;一维铟基化合物异质结构纳米材料的静电纺丝合成及光催化性质研究[D];齐鲁工业大学;2015年
9 张永辉;BiOX(I、Br、Cl)的合成、表征与改性[D];齐鲁工业大学;2015年
10 孙琦;功能化magadiite基异质结构的制备及性能研究[D];北京化工大学;2015年
,本文编号:2017209
本文链接:https://www.wllwen.com/kejilunwen/dianzigongchenglunwen/2017209.html