回旋管输出系统及收集级热分析技术
发布时间:2018-06-15 04:17
本文选题:回旋行波管 + 输出窗 ; 参考:《电子科技大学》2015年硕士论文
【摘要】:回旋行波管是一种非常重要的高功率毫米波器件,有宽频带、高功率和高益等优点,在毫米波雷达、通讯及电子对抗、微波武器等领域有着广泛的应用前景,因而在国际国内倍受重视。随着回旋行波管研制技术的不断发展,其输出功率越来越高,工作带宽越来越宽,工作频率也开始向太赫兹方向渗透。输出窗和收集极都是回旋管的重要部件,随着管子功率的增加,微波穿过输出窗所产生的耗散功率越大以及经过注波互作用后的回旋电子轰击收集极所产生的局部热量也就越多,这严重影响回旋管整管的效率以及使用寿命,因此对回旋行波管输出窗和大功率收集极设计提出了越来越高的要求。输出系统以及收集极的热性能直接影响输出窗的功率容量和收集极收集剩余电子的能力,所以对输出系统和收集极的热分析技术的研究有着重要的意义。本文主要内容包括以下几个方面:1.详细论述国内外回旋行波管输出窗和收集极热分析的研究情况和发展态势,对传热学、有限元法、绝热压缩理论等基本理论做了阐述,传热学理论是对输出窗热分析的基础,绝热压缩理论是研究收集极的基础。2.阐述了热分析方法中的的两类主要分析软件ANSYS Workbench和CST多物理场仿真的基础应用,对比国内传统热分析方法,阐述了HFSS关联ANSYS Workbench进行多物理场分析的优点以及难点。3.编写MATLAB程序对热分析的基本理论进行验证,利用HFSS电磁仿真软件分析输出窗的微波传输特性。再通过ANSYS Workbench软件对回旋行波管输出窗进行热分析,研究窗片的温度分布,并进一步研究输出窗温度分布对输出窗窗片热形变、功率容量、以及应力分布的影响。在此基础上对Ka波段圆波导输出窗进行优化,提高功率容量;并在Q波段提出一种回旋行波管宽带高平均功率输出窗,此种输出窗有较高的功率容量以及较低的窗片温度。4.利用CST设计工作室对输出窗进行微波仿真,分析窗片的微波传输特性,进一步利用CST软件进行热分析和热应力分析。5.针对传统的大功率收集极局部过热的问题,利用ANSYS Workbench对其结构进行优化,将圆柱型收集极改进为斜面收集极,提高收集极收集电子的密度。由于回旋管功率较高,注波互作用后的剩余电子还带有大量的能量降落至收集极,为了降低电子轰击收集极的耗散功率,在斜面收集极斜面段加入降压段,采用斜面降压收集极,降低电子轰击收集极的耗散功率,提高收集极的功率容量。6.利用CST粒子工作室模拟电子进入收集极的粒子轨迹,利用CST多物理场协同仿真,对斜面收集极和改进后的降压收集极进行热分析。首先对收集极S11,S21传输特性参数进行优化分析,最后对比分析斜面收集极与降压收集极受电子轰击所产生耗散功率和因电子轰击所产生的温升。
[Abstract]:Gyrotron traveling wave tube (TWT) is a very important high power millimeter wave device, which has the advantages of wide band, high power and high benefit. It has a wide application prospect in the fields of millimeter wave radar, communication, electronic countermeasure, microwave weapon and so on. Therefore in the international and domestic attention. With the development of gyrotron TWT technology, the output power becomes higher and higher, the working bandwidth becomes wider and wider, and the operating frequency begins to penetrate to THz. Both the output window and the collector are important components of the gyrotron, as the power of the tube increases, The higher the dissipative power generated by microwave passing through the output window and the more local heat produced by the gyrotron electron bombardment of the collector after beam-wave interaction, the greater the efficiency and service life of the gyrotron. Therefore, the design of the output window and the high power collector of the gyrotron TWT is more and more demanding. The thermal properties of the output system and the collector directly affect the power capacity of the output window and the ability of the collector to collect residual electrons, so it is of great significance to study the thermal analysis technology of the output system and the collector. The main contents of this paper include the following aspects: 1. The research situation and development trend of the output window and collecting extreme thermal analysis of gyrotron traveling wave tube at home and abroad are discussed in detail. The basic theories of heat transfer, finite element method, adiabatic compression theory and so on are expounded. The heat transfer theory is the basis of thermal analysis of the output window. Adiabatic compression theory is the basis for the study of collector. The basic application of ANSYS Workbench and CST multi-physical field simulation in thermal analysis method is described. Compared with the traditional thermal analysis method in China, the advantages and difficulties of HFSS associated ANSYS Workbench in multi-physical field analysis are expounded. The basic theory of thermal analysis is verified by MATLAB program, and the microwave transmission characteristics of output window are analyzed by HFSS electromagnetic simulation software. Then the thermal analysis of the output window of the gyrotron traveling wave tube is carried out by ANSYS Workbench software, and the temperature distribution of the window plate is studied, and the influence of the temperature distribution of the output window on the thermal deformation, power capacity and stress distribution of the output window plate is further studied. On this basis, the output window of Ka-band circular waveguide is optimized to improve the power capacity, and a wideband high average power output window of gyrotron traveling wave tube is proposed in Q band. The output window has higher power capacity and lower window temperature. The microwave simulation of the output window is carried out by CST design studio, and the microwave transmission characteristics of the window are analyzed, and the thermal analysis and thermal stress analysis are carried out by CST software. In order to solve the problem of local overheating of the traditional high power collector, the structure of the collector is optimized by ANSYS Workbench, and the cylindrical collector is improved to the oblique collector to increase the density of collecting electron. Because of the high power of gyrotron, the residual electrons after beam-wave interaction also fall to the collector with a large amount of energy. In order to reduce the dissipative power of the collector by bombardment, a depressurization section is added to the sloping plane of the collector. The sloping voltage down collector is used to reduce the dissipative power of the collector and to increase the power capacity of the collector. The CST particle studio is used to simulate the particle trajectory of electron entering the collector and the CST multi-physical field co-simulation is used to conduct thermal analysis of the inclined collector and the improved step-down collector. The transmission characteristic parameters of the collector S11 / S21 are optimized. Finally, the dissipative power and the temperature rise caused by the electron bombardment are compared between the inclined collector and the step-down collector.
【学位授予单位】:电子科技大学
【学位级别】:硕士
【学位授予年份】:2015
【分类号】:TN124
【参考文献】
相关硕士学位论文 前1条
1 郑志清;回旋管电子光学系统的热分析[D];电子科技大学;2013年
,本文编号:2020605
本文链接:https://www.wllwen.com/kejilunwen/dianzigongchenglunwen/2020605.html