当前位置:主页 > 科技论文 > 电子信息论文 >

基于SiGe工艺的微波数控移相器芯片及SoC研究

发布时间:2018-08-03 10:47
【摘要】:近年来,大规模微波毫米波相控阵在军事雷达领域得到了迅猛发展,并将有望成为现代通信方案(例如5G)的组成部分;相控阵能达到更快的波束形成和更强的干扰抑制,因而具有更好的信噪比和更高的信道容量。这就迫切需要研制出高性能、小型化、可批量生产的移相器芯片以及射频收发组件系统级芯片。传统上,III-V技术(InP或GaAs)由于其在输出功率和噪声方面的优异性能被广泛采用,却也存在价格高、集成度低的问题。然而,近年来BiCMOS工艺在射频微波领域的快速发展,使研制出高集成度低成本的移相器芯片和射频前端SoC成为可能。基于格罗方德0.13μm SiGe BiCMOS工艺,本文将对微波数字移相器芯片以及射频前端SoC展开研究,包括Ku和K波段两个6-bit数控移相器的芯片设计以及K波段多功能T/R收发前端SoC设计,具体研究结果如下:采用工艺库中具有良好高频性能和隔离特性的nfetw_rf(深势阱场效应晶体管),作为移相器中的关键开关器件,设计了Ku和K波段两款6-bit数控移相器,两个无源移相器均采用级联六个移相单元的结构。其中的Ku波段移相器工作在15~18GHz频段内,可达到0~360°全相位的移相,最小分辨率为5.625°;移相均方根误差在全频带内1.75°;插损为-10.8~-9.3dB,移相附加衰减控制在±0.1~0.8dB之间,VSWR2,输入功率P_1dB为14.01dBm。而K波段移相器工作在19~24GHz频段内,同为6-bit的移相精度;移相RMS error2.60°;插损为-13.8~-11.6dB,移相附加衰减在±0.2~1.1dB之间,VSWR2,输入功率P_1dB为15.93dBm。这两款移相器具有高精度、低插损、宽带宽、高线性度的特点。针对移相器在SoC中的应用,根据实验室与国内某单位的合作项目需求,另外设计一款K波段全单片式TR收发组件前端芯片,其中包括波控、电源控制、射频等单元电路;射频部分包括上述K波段数控移相器在内,同时集成了低噪放、驱放、开关、数控衰减器等单元。此外,为实现高低温环境下系统的噪声和增益特性,对放大器引入随温度线性变化的电流源进行温度补偿,还在系统中单独嵌入温补衰减器模块。常温下,19~24GHz频段内仿真结果表明:接收/发射通道增益20dB,接收通道噪声4.6dB,接收通道输入P_1dB-14.3dBm,发射通道输出功率大于12.4dBm,6位移相步进,移相RMS error2.9°,6位衰减步进,衰减RMS error0.52dB。
[Abstract]:In recent years, large-scale microwave and millimeter-wave phased arrays have developed rapidly in the field of military radar, and are expected to become part of modern communication schemes (such as 5G), which can achieve faster beamforming and stronger interference suppression. Therefore, it has better signal-to-noise ratio and higher channel capacity. Therefore, it is urgent to develop high performance, miniaturization, batch production phase shifter chip and RF transceiver module system-level chip. Traditional III-V technology (InP or GaAs) is widely used because of its excellent performance in output power and noise, but it also has the problems of high price and low integration. However, with the rapid development of BiCMOS technology in the field of RF and microwave in recent years, it is possible to develop phase shifter chips and RF front-end SoC with high integration and low cost. Based on Grofonde 0.13 渭 m SiGe BiCMOS technology, the microwave digital phase shifter chip and RF front-end SoC are studied in this paper, including the chip design of Ku and K-band 6-bit digital phase shifter and the SoC design of K band multifunction T / R transceiver front end. The results are as follows: nfetw_rf (Deep potential well Field effect Transistor), which has good high frequency performance and isolation property in the process library, is used as the key switch device in the phase shifter. Two 6-bit digital phase shifters are designed, which are Ku and K-band. Both passive phase shifters adopt the structure of cascaded six phase shifters. The Ku-band phase shifter works in the 15~18GHz band, with a minimum resolution of 5.625 掳, a phase-shifting phase shift with a minimum resolution of 5.625 掳, a phase-shift root mean square error of 1.75 掳in the full band, a insertion loss of -10.8 ~ 9.3dB, an additional phase-shift attenuation control between 卤0.1~0.8dB and an input power of 14.01 dBm. The K-band phase shifter works in the 19~24GHz band, with the same phase shift accuracy of 6-bit; phase shift RMS error2.60 掳; insertion loss of -13.8- 11.6dB. the additional attenuation of phase-shift is between 卤0.2~1.1dB and VSWR2, and the input power P_1dB is 15.93dBm. These two phase shifters are characterized by high precision, low insertion loss, wide bandwidth and high linearity. Aiming at the application of phase shifter in SoC, according to the requirement of the cooperation project between the laboratory and a certain unit in China, a K band full-chip tr transceiver front-end chip is designed, which includes wave control, power control, radio frequency and so on. The RF part includes the K band digital control phase shifter, and integrates low noise amplifier, drive amplifier, switch, numerical control attenuator and so on. In addition, in order to realize the noise and gain characteristics of the system under high and low temperature, the amplifier introduces a current source with linear variation of temperature to compensate for the temperature, and a temperature compensation attenuator module is embedded separately in the system. The simulation results in 24GHz band show that the gain of receiving / transmitting channel is 20 dB, the noise of receiving channel is 4.6 dB, the input of reception channel is P1dB-14.3 dBm. the output power of transmission channel is more than 12.4dBmH6 displacement step, and the phase shift RMS error2.9 掳-6-bit attenuation step, the attenuation RMS error is 0.52dB.
【学位授予单位】:电子科技大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:TN623

【参考文献】

相关期刊论文 前3条

1 刘超;唐海林;刘海涛;李强;熊永忠;;基于SiGe BiCMOS工艺的X和Ka波段T/R多功能芯片设计[J];微波学报;2016年06期

2 陈昌铭;李巍;李宁;;一种新型X波段5bit本振移相器设计[J];复旦学报(自然科学版);2015年02期

3 王巍;徐巍;钟武;林涛;袁军;徐骅;;一种基于0.18μm SiGe BiCMOS工艺的X/Ku波段数字有源移相器[J];微电子学;2014年01期

相关硕士学位论文 前2条

1 曹超;基于BiCMOS超宽带低噪声有源数控移相器设计[D];西安电子科技大学;2014年

2 朱新亮;超宽带五位有源数控移相器设计[D];西安电子科技大学;2013年



本文编号:2161508

资料下载
论文发表

本文链接:https://www.wllwen.com/kejilunwen/dianzigongchenglunwen/2161508.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户f4abc***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com