氮化镓基半导体电力电子器件击穿机理研究
[Abstract]:The breakdown voltage of GaN-based power electronic devices is still far from its theoretical limit, which means that there is still much room to improve the breakdown characteristics of GaN-based power electronic devices. In this paper, the breakdown mechanism of GaN-based power electronic devices is studied extensively and deeply. In the second chapter of this paper, the problems in the process and Simulation of GaN-based HEMT and the details that need attention are discussed. The criteria for determining the five basic parameters are maximum output current IDmax, threshold voltage Vth, gate leakage Igleak, breakdown voltage VBR and characteristic on-resistance RON. Finally, three breakdown mechanisms are summarized: avalanche breakdown caused by local high electric field, thermal runaway caused by leakage current and temperature, and air breakdown between gate leakage. In the third chapter, three aspects related to the breakdown characteristics of Schottky leak HEMT are presented. Firstly, the Schottky leak structure is used to improve the forward bias and reverse bias blocking voltages of AlGaN/GaN HEMT, and the mechanism of increasing the two blocking voltages is discussed. By using Schottky leakage, the forward bias and reverse bias blocking voltages are increased from 72 V and - 5 V to 149 V and - 49 V respectively, which means that Schottky leakage can increase both breakdown voltages at the same time. The combination of Schottky leakage and leaky field plate can improve the idea of reverse bias blocking voltage. Leaky field plate can alleviate the peak value of electric field near the leaky electrode, and the reverse bias blocking voltage can be increased from - 67 V to - 653 V by using leaky field plate. The simulation results show that the combination of Schottky leakage and leaky field plate can effectively improve the reverse bias blocking ability of the device. In order to prevent the negative effect of the leaky field plate on the positive bias blocking voltage, the gap between the gate edge and the leaky field plate must be larger than a certain value, which ensures that the leaky field plate does not extrude the potential produced by the positive leakage voltage. To explain the mechanism of high K passivation layer increasing breakdown voltage in AlGaN/GaN HEMT, a metal/insulator/semiconductor structure (MIS) is formed between the side wall and the top of gate metal and GaN-based heterojunction material for HEMT with passivation layer, which is the real reason for modulating electric field in high K passivation layer. Thicker grid metal can increase the breakdown voltage of the device, thicker field plate can alleviate the peak value of electric field at the field plate, and can further improve the breakdown characteristics of the device. A high-performance AlGaN/GaN HEMT device with gate-to-drain spacing of 7 microns, breakdown voltage of 1310 V and power quality factor of 3.67 *109 V 2?-1.cm-2 is designed. This is the highest value of all GaN-based HEMTs. GaN MISHEMT devices and high voltage annular AlGaN/GaN HEMT devices. For AlGa N-channel HEMT with gate-to-drain spacing of 3 microns, the breakdown voltage increased from 144 V to 320 V. In addition, the trap states of AlGaN-channel HEMT were characterized by frequency conversion CV method for the first time in the world. It was found that the traps in AlGa N-channel HEMT were deeper than those in Ga N-channel HEMT. About 0.04 eV. The threshold voltage and breakdown voltage of InAlN/GaN HEMT are increased by combining gate dielectric with F-treatment under reasonable conditions. By F-treatment, the threshold voltage is drifted from - 7.6 V to 1.8 V. The negative charge F-ion modulated conductive band effectively reduces the gate leakage and buffer leakage. The gate-drain spacing is 3 micron and the buffer is reduced. Layer leakage increases the breakdown voltage of the device from 80 V to 183 V. The experimental results show that the threshold voltage and breakdown voltage can be increased simultaneously by combining gate dielectric with reasonable F treatment. It is an effective method to realize high voltage enhanced InAlN/GaN HEMT. The average breakdown electric field strength between the gate and drain is increased from 0.42 MV/cm to 0.96 MV/cm by using a circular structure in a regular strip HEMT. In Chapter 6, the limitation of conventional three-terminal breakdown characterization method is pointed out, and an improved method is proposed to solve the problems in its application. For conventional breakdown, seven breakdown curves are summarized, but the conventional breakdown characterization formulas are found. For the other five breakdown curves, the value of gate leakage current is larger than that of leakage current within a certain range of leakage voltage. In addition, the source current can not be used to characterize the buffer leakage, and their values and symbols are inconsistent. These problems show that the conventional characterization methods must be improved to accurately characterize the breakdown mechanism of the devices. Similar problems also occur in the off-state stress breakdown. The characterization method is also improved based on the two leakage currents. By using the improved method, the problems in the application of conventional breakdown characterization method are solved. The experiment and analysis show that the improved breakdown characterization method is very important for the study of the breakdown mechanism of GaN-based HEMT.
【学位授予单位】:西安电子科技大学
【学位级别】:博士
【学位授予年份】:2015
【分类号】:TN386
【相似文献】
相关期刊论文 前10条
1 Narain G.Hingorani ,李志晨;电力电子器件在未来电力系统中的作用[J];微电子学;1989年03期
2 ;“电力电子器件技术交流会”大会报告题目及报告人[J];半导体技术;1990年05期
3 张青云;电力电子器件的应用及发展[J];现代电子技术;2001年01期
4 李现兵,师宇杰,王广州,黄娟;现代电力电子器件的发展与现状[J];世界电子元器件;2005年05期
5 李现兵;师宇杰;王广州;王桂荣;;浅谈现代电力电子器件的发展[J];电力电子;2005年03期
6 谷海红;张珊靓;;电力电子器件的分析与应用[J];电气开关;2006年06期
7 赵定远;赵莉华;;现代电力电子器件的发展[J];成都大学学报(自然科学版);2007年03期
8 彭伟发;;“电力电子器件及其应用”教学方法浅论[J];华东交通大学学报;2007年S1期
9 钱金川;朱守敏;;电力电子器件绝缘栅双极晶体管的应用与保护(续一)[J];江苏电器;2008年02期
10 邓爱喜;;电力电子器件的发展与应用[J];科技经济市场;2008年05期
相关会议论文 前5条
1 肖向锋;;制造电力电子器件的新型关键电子材料[A];2010中国电子信息材料产业发展高峰论坛论文集[C];2010年
2 陈治明;;碳化硅电力电子器件研发进展与存在问题[A];中国电工技术学会电力电子学会第八届学术年会论文集[C];2002年
3 ;常州瑞华电力电子器件有限公司概况[A];2008中国电工技术学会电力电子学会第十一届学术年会论文摘要集[C];2008年
4 祁春清;梁中华;;电力电子器件故障诊断的灰色理论方法探讨[A];全面建设小康社会:中国科技工作者的历史责任——中国科协2003年学术年会论文集(上)[C];2003年
5 庄留杰;;现代电力电子器件和PWM控制技术[A];2006年电气工程教育专业委员会年会论文集[C];2006年
相关重要报纸文章 前10条
1 CCID微电子研究所;电力电子器件业向往高端[N];中国电子报;2002年
2 本报记者 翼青;新政策力挺电力电子器件行业产业化[N];机电商报;2007年
3 本报记者 段心鑫;电力电子器件产业发展看好[N];中国工业报;2007年
4 刘国友;高端电力电子器件依赖进口我国企业需加快突围[N];中国电子报;2008年
5 辽宁工学院 陈永真;电力电子器件技术发展重点[N];中国电子报;2004年
6 记者 徐阳 王立新;新型电力电子器件生产基地开工[N];吉林日报;2011年
7 祖强;浅谈碳化硅电力电子器件[N];中国电子报;2003年
8 尉红旗;电力电子行业今年将打通四个重要关节[N];中国工业报;2005年
9 证券时报记者 刘征;中国南车携手中科院建设“绿色中国芯”电力电子器件[N];证券时报;2011年
10 才立;目标:让产品成为行业最高标准[N];无锡日报;2009年
相关博士学位论文 前2条
1 张健;电力电子器件及其装置的散热结构优化研究[D];哈尔滨工业大学;2015年
2 赵胜雷;氮化镓基半导体电力电子器件击穿机理研究[D];西安电子科技大学;2015年
相关硕士学位论文 前1条
1 包明冬;机车电力电子器件用散热器热力性能数值仿真[D];大连交通大学;2012年
,本文编号:2188434
本文链接:https://www.wllwen.com/kejilunwen/dianzigongchenglunwen/2188434.html