基于时频分析和复数域的模拟电路故障诊断研究
[Abstract]:Facing the high-speed integration and large-scale of circuits, people urgently need to study more advanced, efficient and intelligent analog circuit fault diagnosis theory and technology, so as to meet the high requirements of electronic system security, reliability and testability in the field of modern electronic industry. Faults caused by overlapping between obstacles have become the focus of analog circuit fault diagnosis. Time-frequency analysis can provide the distribution information of signals at the same time in time and frequency, and can clearly scale the frequency and amplitude of signals at any time. Complex-domain analysis transforms the time-domain signals into complex-domain signals, using real and imaginary parts. Both of them can provide more distinguishable detail features for fault diagnosis. This paper focuses on time-frequency analysis and complex domain analysis to study the parameter fault diagnosis of analog circuits and proposes a new diagnosis method. The results are as follows: (1) A fault diagnosis method for analog circuits based on set empirical mode decomposition (EMD) and Extreme Learning Machine (EEMD-ELM) is proposed. In this paper, a method of constructing fault eigenvectors of analog circuits by EEMD combined with relative entropy and kurtosis is proposed. The single-parameter and multi-parameter fault diagnosis is performed by ELM. First, the output signals of normal state and fault state responses are collected respectively, and then the response outputs are decomposed into a set of intrinsic mode functions (IMFs) by EEMD. The kurtosis of the circuit state IMF and the relative entropy between the circuit normal state IMF and the fault state IMF are constructed as fault feature vectors, which are used as input samples of the ELM for fault diagnosis. The fault eigenvector optimization of analog circuits based on local mean decomposition (LMD) is studied and a new optimization strategy based on clustering method is proposed.The principle and decomposition process of LMD are studied in detail.The response output signal of the circuit under test is decomposed into a series of product function (PF) signals by LMD technology. The dimension of eigenvectors will increase with the number of PFs decomposed by signals. Therefore, a new feature optimization strategy is proposed to reduce the dimension of eigenvectors. The simulation results show that this strategy can effectively reduce the dimension of fault feature vectors and the amount of classifier calculation, and also can effectively diagnose faults. (3) A complex domain fault modeling method based on least square circle fitting algorithm is proposed. Fault response of analog circuits is continuous and infinite, but the fault eigenvalues stored in the traditional fault diagnosis model dictionary are discrete, which inevitably leads to incomplete fault types in the dictionary. Based on the theory of fault modeling in complex domain of analog circuit, the least square circle fitting algorithm is proposed to fit the fault characteristic function as the fault characteristic, and the corresponding fault diagnosis method is proposed for the model. The simulation and actual circuit experiments show that the method can be well implemented. Fault diagnosis. (4) Fault sample selection based on ant colony algorithm. In traditional test validation experiments, random test sample selection method based on fault rate often ignores the selection of propagation faults with small fault rate, but propagation faults may cause very serious diffusion faults once they occur. In this paper, the directed graph method and ant colony algorithm are used to search the optimal propagation path of propagation faults, and then a set of subsequent propagation paths is established for each fault module (device). According to the new sample selection strategy, the test samples are optimized. Simulation results show that the strategy can improve the selection rate of propagation faults and test performance. Strength and reduce use risk.
【学位授予单位】:电子科技大学
【学位级别】:博士
【学位授予年份】:2017
【分类号】:TN710
【参考文献】
相关期刊论文 前10条
1 何星;王宏力;孙渊;姜伟;;基于提升奇异值分解和EEMD的IMU模拟电路故障特征提取方法[J];信息与控制;2014年03期
2 姜万录;刘云杰;朱勇;;小波脊线解调与两次EMD分解相结合的故障识别方法及应用研究[J];仪器仪表学报;2013年05期
3 胡海涛;李志华;;基于频率特性的模拟电路故障诊断研究[J];计算机与现代化;2012年06期
4 宋国明;王厚军;刘红;姜书艳;;基于提升小波变换和SVM的模拟电路故障诊断[J];电子测量与仪器学报;2010年01期
5 李天梅;邱静;刘冠军;;基于故障率的测试性验证试验故障样本分配方案[J];航空学报;2009年09期
6 侯青剑;王宏力;;一种基于EMD的模拟电路故障特征提取方法[J];系统工程与电子技术;2009年06期
7 王厚军;;可测性设计技术的回顾与发展综述[J];中国科技论文在线;2008年01期
8 谢永乐;;模拟VLSI电路故障诊断的相关分析法[J];半导体学报;2007年12期
9 谢永乐;;模拟VLSI测试的小波滤波器组方法[J];计算机辅助设计与图形学学报;2007年11期
10 袁海英;陈光;谢永乐;;故障诊断中基于神经网络的特征提取方法研究[J];仪器仪表学报;2007年01期
相关博士学位论文 前8条
1 胡鸿志;基于相量分析的模拟电路故障诊断方法研究[D];电子科技大学;2015年
2 李西峰;信息论观点下的模拟电路故障诊断方法研究[D];电子科技大学;2014年
3 李晴;基于优化机器学习算法的模拟电路故障诊断研究[D];湖南大学;2013年
4 杨贤昭;基于经验模态分解的故障诊断方法研究[D];武汉科技大学;2012年
5 杨成林;模拟故障字典技术测点选择问题研究[D];电子科技大学;2011年
6 宋国明;基于提升小波及SVM优化的模拟电路智能故障诊断方法研究[D];电子科技大学;2010年
7 李天梅;装备测试性验证试验优化设计与综合评估方法研究[D];国防科学技术大学;2010年
8 唐静远;模拟电路故障诊断的特征提取及支持向量机集成方法研究[D];电子科技大学;2010年
相关硕士学位论文 前2条
1 王宏;模拟电路故障诊断故障字典法研究[D];西安电子科技大学;2007年
2 刘丹;模拟电路故障诊断中故障字典应用的研究[D];华中科技大学;2006年
,本文编号:2188550
本文链接:https://www.wllwen.com/kejilunwen/dianzigongchenglunwen/2188550.html