Mn掺杂ZnO量子线的电子结构及磁学性质研究
[Abstract]:With the rise of the third science and technology revolution and the development of science and technology, the cognition of the microcosm is becoming more and more fine, and it can reach the level of -1510 m at present. With the decrease of scale, nanomaterials have attracted wide attention due to their unique physical properties. As a traditional wide bandgap semiconductor, zinc oxide has its unique properties in many fields, such as photoelectricity, piezoelectric, thermoelectricity and ferroelectricity. It has great application potential and research value. The study of nanoscale semiconductor materials includes two dimensional quantum well, one dimensional quantum wire, zero dimensional quantum dot or quantum ring. Since modern times, ZnO-based dilute magnetic semiconductors have attracted extensive attention of many researchers in the world for their great potential application in spin electronics. Relevant theoretical and experimental results have been continuously reported. In quantum wells, quantum dots and quantum rings, the scientific community has made a lot of achievements, but the research on quantum wires is relatively rare. In this paper, the electronic structure of Zn O quantum wire is discussed, and the influence of magnetic field on it is discussed. In addition, the variation of valence band in the magnetic field of manganese doped zinc oxide thin magnetic semiconductor quantum wire is analyzed. Some magneto-optic properties of the material in the magnetic field have been studied. The main problems and conclusions in this paper are as follows: (1) the development of nanomaterials is described in Chapter 1, and the significance of their research is demonstrated. In this chapter, the properties and characteristics of Zn O and dilute magnetic semiconductors are briefly explained, as well as some theories used in this paper. (2) in chapter 2, the theoretical models used in this paper are derived in detail. (3) in chapter 3, the energy band structure of Zn O quantum wire is calculated. Based on the effect mass approximation, the Hamiltonian of the empty and electronic states of wurtzite is first derived. By solving the Schrodinger equation, the 10 lowest valence bands with several different angular momentum hJ are obtained. By comparing the band changes of BC0T and BC20T, we can see that all valence band bands are doubly degenerate in the absence of magnetic field, and the simple parallel states will split when the magnetic field is added. (4) in chapter 4, the electronic structure and magnetic properties of Mn doped Zn O quantum wires are studied. In this chapter, the electron and hole states of Mn doped Zn O quantum wires under magnetic field are obtained based on the effective mass theory of six-band k p perturbation, and the Schrodinger equation is solved by Bessel function expansion method. Then 10 lowest valence bands with different angular momentum hJ are calculated. We find that all valence bands will no longer degenerate in a magnetic field. In addition, we also find that when the magnetic field B is not zero, all the hole states with positive hJ will be reversed, and no inversion will occur when the magnetic field B is negative. In the second half of this chapter, we have calculated and drawn Mn doped Zn O quantum wires in? By comparative analysis we find that the number of absorption peaks increases with the increase of carrier concentration and temperature. It is found that the quasi Fermi level of mn doped Zn O quantum wire does not change with the concentration of Mn ion, but the quasi Fermi level of valence band increases with the increase of Mn ion concentration.
【学位授予单位】:重庆大学
【学位级别】:硕士
【学位授予年份】:2015
【分类号】:TN304.21
【相似文献】
相关期刊论文 前10条
1 张贤高;方忠慧;陈坤基;钱昕晔;刘广元;徐骏;黄信凡;何飞;;双栅调控的硅量子线中的库仑振荡效应[J];物理学报;2011年02期
2 盛柏桢;量子线的精密制作技术[J];固体电子学研究与进展;1991年04期
3 李文霞,刘建军,李有成;量子线的一维等效势模型的研究[J];河北师范大学学报;2000年04期
4 郭子政,吴晓薇,周培勤;T型量子线的电子结构计算[J];内蒙古师大学报(自然科学汉文版);2000年02期
5 张臣,赵小宁;半导体量子线材料[J];半导体情报;2001年03期
6 楚海建;张凯;杨洪伟;杨小令;梁金栋;;横截面为三角形的半导体量子线结构的弹性解[J];扬州大学学报(自然科学版);2007年03期
7 郭志超;王光灿;曹胜男;;电子在圆柱形半导体量子线中的行为研究[J];原子核物理评论;2007年03期
8 郭志超;曹胜男;王清理;;圆柱形半导体量子线中电子和空穴能态[J];云南大学学报(自然科学版);2007年S1期
9 王忆锋;;量子线红外光子探测器的研究进展[J];光电技术应用;2008年06期
10 李宏;郭华忠;路川;李玲;高洁;;声表面波单电子输运器件中量子线的电学特性研究[J];物理学报;2008年09期
相关会议论文 前5条
1 陈弘;张云;;侧向外延一维量子线截面样品制备技术[A];第八次全国电子显微学会议论文摘要集(Ⅱ)[C];1994年
2 狄尧民;;多值量子线路的有效合成与多值量子态的有效制备[A];第十六届全国量子光学学术报告会报告摘要集[C];2014年
3 李文东;顾永建;刘凯;Yuan-Harng Lee;Yao-ZhongZhang;;Qubit和Ququart系统中的最优普适量子计算[A];第十五届全国量子光学学术报告会报告摘要集[C];2012年
4 姚文杰;俞重远;刘玉敏;芦鹏飞;;量子线线宽对应变分布和带隙的影响[A];全国第十三次光纤通信暨第十四届集成光学学术会议论文集[C];2007年
5 余亚斌;;介观结构体系的动态响应[A];2006“与统计有关的凝聚态物理中一些数值计算问题”研讨会论文集[C];2006年
相关博士学位论文 前9条
1 常凯;量子线中的电声子相互作用[D];北京师范大学;1996年
2 李文东;量子信息处理中量子线路的优化构造与实现[D];中国海洋大学;2012年
3 赵增茹;柱形量子线中的电—声子相互作用[D];内蒙古大学;2009年
4 宋铁磊;矩形量子线中的电—声子相互作用[D];内蒙古大学;2011年
5 王廷栋;半导体量子线中载流子多体相互作用及其光谱学效应[D];中国科学院研究生院(上海应用物理研究所);2014年
6 谢洪鲸;极性晶体量子线的极化子效应[D];北京师范大学;2002年
7 付喜;半导体异质结自旋轨道耦合量子线自旋输运研究[D];湖南师范大学;2009年
8 程芳;Luttinger量子线的交流输运性质[D];湖南师范大学;2008年
9 黄少华;一维半导体纳米线体系的光谱和光学性质研究[D];复旦大学;2006年
相关硕士学位论文 前10条
1 张颖;Mn掺杂ZnO量子线的电子结构及磁学性质研究[D];重庆大学;2015年
2 孙会妙;垂直磁场下三角形量子线中激子束缚能的研究[D];河北师范大学;2010年
3 段秀芝;磁场下有限深矩形量子线中激子束缚能的研究[D];河北师范大学;2008年
4 闻腾;量子线路模块化级联运算规则的研究[D];太原科技大学;2013年
5 张贺秋;一维量子线的能带计算与分析[D];大连理工大学;2000年
6 杨谋;电磁场辐照下量子线的电子输运和力学性质[D];湖南师范大学;2003年
7 肖贤波;半导体量子线在电磁场辐照下的电子输运性质[D];湖南师范大学;2004年
8 鲁耿彪;含时外场下量子线中电子态及其物理特性[D];湖南师范大学;2006年
9 李闯;量子线中磁场诱导的电荷输运[D];吉林大学;2008年
10 苏婷;GaAs与AlGaAs构成的量子线中的电子输运特性[D];哈尔滨工业大学;2009年
,本文编号:2218946
本文链接:https://www.wllwen.com/kejilunwen/dianzigongchenglunwen/2218946.html