当前位置:主页 > 科技论文 > 电子信息论文 >

基于近红外光谱的小麦品质参数快速检测

发布时间:2018-09-07 17:10
【摘要】:为了实现对小麦品质参数的快速检测,本文提出了基于近红外光谱结合定量算法建立数学模型,以全国各地的160份小麦颗粒和小麦面粉为对象,采集其漫反射吸收光谱,并以国标法检测得到小麦的蛋白质含量、水分值和面筋值作为参考值,将所得样品均匀划分成训练集和验证集,对所建模型进行定标验证,并使用最佳模型检测小麦其它成分,具体研究内容和结果如下:1、以BP神经网络为基础,结合不同的优化算法建立数学模型通过神经网络定量分析方法,结合小波算法、去趋势算法、一阶导数算法、主成分分析法等预处理算法,对得到的小麦蛋白质光谱数据进行预处理,结果表明:神经网络通过主成分分析和去趋势算法得到的结果最佳R值高达0.98,RMSEP为0.26%,其他数学模型线性结果较佳,R值在0.95到0.98之间,RMSEP在0.26%到0.30%之间。2、以偏最小二乘回归PLSR为基础,结合不同的优化算法建立数学模型通过偏最小二乘法定量分析方法,结合小波算法,一阶导数,二阶导数,去趋势算法建立数学模型,采用交叉验证留一法取得最佳主成分个数。对小麦蛋白质光谱数据进行处理,结果比较,数据经过交叉验证留一法结合小波变换对光谱数据进行预处理,得到的结果最佳R值为0.92,RMSPCV为1.71%,而其他数学模型线性效果一般。3、比较分析上述两个模型通过两个数学模型进行分析比较得出,神经网络的预测能力明显高于偏最小二乘法,不管是R还是RMSEP的数值大小都说明神经网络更适合处理非线性的问题。4、基于BP神经网络模型,对小麦水分和面筋含量的检测使用已有的神经网络数学模型对小麦的水分和面筋值含量进行检测,通过分析比较,面粉面筋在BP-ANN结合Detrended优化算法下,得到的分析结果最佳,其中R值高达0.98,RMSEP值仅为0.24%,而小麦水分在BPP-ANN结合小波变换的算法下得到的结果最佳,其中R为0.96,RMSEP值为0.31%。
[Abstract]:In order to detect wheat quality parameters quickly, a mathematical model based on near infrared spectroscopy (NIR) combined with quantitative algorithm is proposed. 160 wheat grains and wheat flour from all over the country are taken as objects, and their diffuse reflectance absorption spectra are collected. The protein content, water value and gluten value of wheat were measured by national standard method as reference values. The samples were divided into training set and verification set, the model was calibrated and the best model was used to detect the other components of wheat. The specific research contents and results are as follows: 1. Based on BP neural network, mathematical model is established by combining different optimization algorithms. Quantitative analysis method of neural network, wavelet algorithm, trend removal algorithm, first-order derivative algorithm are used. Pretreatment algorithms such as principal component analysis (PCA) were used to preprocess the wheat protein spectral data. The results show that the optimum R value of neural network obtained by principal component analysis and de-trend algorithm is as high as 0.26, and that of other mathematical models is 0.95 to 0.98. The optimum R value of neural network is 0.26% to 0.30%, which is based on partial least square regression (PLSR). Combined with different optimization algorithms, mathematical models were established by partial least square quantitative analysis method, wavelet algorithm, first derivative, second order derivative, de-trend algorithm. The best number of principal components is obtained by using cross validation method. The spectral data of wheat protein were processed. The results showed that the data were preprocessed by cross validation and wavelet transform. The optimum R value is 0.92g RMSPCV (1.71V), while the linear effect of other mathematical models is normal. The comparison and analysis of the above two models show that the prediction ability of the neural network is obviously higher than that of the partial least square method. The magnitude of either R or RMSEP indicates that neural networks are more suitable for dealing with nonlinear problems. 4, based on the BP neural network model, The existing neural network mathematical model was used to detect the water content and gluten content of wheat. Through the analysis and comparison, the results of wheat flour gluten analysis under BP-ANN and Detrended optimization algorithm were the best. Among them, the R value was as high as 0.98g RMSEP was only 0.24, while the wheat moisture content was the best under the BPP-ANN and wavelet transform algorithm, where R was 0.96rMSEP = 0.31.
【学位授予单位】:中国计量学院
【学位级别】:硕士
【学位授予年份】:2015
【分类号】:S512.1;TN219

【相似文献】

相关期刊论文 前10条

1 张保军,樊虎玲;环境条件对小麦蛋白质的影响研究进展[J];水土保持研究;2002年02期

2 V.A.Johnson;刘淑芬;陆维忠;;小麦蛋白质育种的进展与展望[J];麦类作物学报;1984年06期

3 林素兰;;春小麦蛋白质和赖氨酸与产量及其构成因素的相关分析[J];辽宁农业科学;1988年01期

4 陆恒;;小麦蛋白质及其制品[J];粮食与饲料工业;1988年03期

5 王世敬;;加拿大小麦蛋白质研究现状[J];宁夏农林科技;1989年04期

6 纪建海;崔志军;;小麦蛋白质、面粉特性与面条品质的探讨[J];粮食科技与经济;2011年01期

7 黎永献;黄前美;王光慈;;大米和小麦蛋白质的快速测定[J];西南农学院学报;1985年01期

8 张京;;小麦蛋白质基因资源的开发和利用[J];种子世界;1986年04期

9 王世敬;加拿大小麦蛋白质研究的现状和成就[J];宁夏农学院学报;1989年02期

10 殷允春;张丽娟;杜金哲;;氮肥运筹对小麦蛋白质及湿面筋含量的影响[J];青岛农业大学学报(自然科学版);2008年04期

相关重要报纸文章 前1条

1 ;小麦蛋白质可能诱发幼儿糖尿病[N];北京科技报;2003年

相关博士学位论文 前1条

1 张其斌;小麦蛋白质的流变行为和力学性能研究[D];浙江大学;2008年

相关硕士学位论文 前5条

1 王铮;化学改性对小麦蛋白质塑料结构与性能的影响[D];浙江大学;2007年

2 温亮;小麦蛋白质近红外模型的建立及特异种质资源筛选与分析[D];华中农业大学;2009年

3 侯东丽;谷氨酰胺转胺酶对小麦蛋白质和淀粉催化研究[D];西北农林科技大学;2011年

4 赖立群;基于近红外光谱的小麦品质参数快速检测[D];中国计量学院;2015年

5 田士林;多小穗小麦蛋白质及相关农艺性状研究[D];西北农林科技大学;2008年



本文编号:2228888

资料下载
论文发表

本文链接:https://www.wllwen.com/kejilunwen/dianzigongchenglunwen/2228888.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户814c1***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com