反熔丝FPGA芯片的布线资源规划与设计实现
[Abstract]:Field Programmable Gate Array (FPGA,Field Programmable Gate Array) is a kind of programmable logic device (PLD,Programmable Logic Device),). PLD,Programmable Logic Device), has the advantages of user field programmable, high integration, high reliability and so on. After more than 30 years of rapid development, FPGA chip has gradually developed from cold-door device to the most important type of programmable device. It has been widely used in many fields such as computer hardware, automotive electronics, Internet of things and so on. Anti-fuse FPGA is a unique type of FPGA chip. It is a one-off programmable device with anti-fuse as the basic programming structure. Because the state of anti-fuse can not be turned over after programming, it has strong anti-irradiation ability, so anti-fuse FPGA is suitable for aerospace and other fields. China's anti-fuse FPGA industry is weak, and many key technical problems need to be studied. Wiring resource is an important part of anti-fuse FPGA, which is the basis of interconnecting the internal structure of the chip. It has great influence on the programming speed and working performance of the anti-fuse chip. Based on the above background, this paper has done a lot of research on the anti-fuse FPGA routing resources, the main research contents are as follows. Firstly, the basic principle of anti-fuse FPGA is studied. Combining with manufacturing process, the routing resources are divided into horizontal routing and vertical routing, which are further combined into horizontal and vertical channels. Finally, routing channels are used to construct the architecture of routing resources. Different circuit sub-modules have different requirements for wiring, so it is better to divide the wiring resources into different types to meet the needs of circuit design. According to this, the routing resources are divided into five types: vertical channel long line, horizontal routing, logical module input routing and logic module output routing. In addition to horizontal routing mainly used in wiring interconnection, the other four routing resources are directly related to logical modules. It can be seen that the design center of routing resources is logic modules. In addition to interconnection, wiring resources also play an important role in programming testing. In this paper, the auxiliary circuit modules of various wiring resources are designed, the structure of the wiring resources is improved, and the performance of the wiring resources is improved. The anti-fuse is located in the wiring resource, and the programming path of the anti-fuse is made up of the wiring resource. Different types of anti-fusing wires construct unique programming paths, which can not only successfully complete the programming process, but also avoid the appearance of false programming. In addition, the influence of wiring resources on FPGA programming order is analyzed, and a reasonable programming sequence is designed. In the last chapter, the usage of wiring resource in the test of chip programming is introduced. A function of shift register is also configured into the chip, and the use of all kinds of wiring resources is analyzed in detail by the development software of anti-fuse FPGA.
【学位授予单位】:电子科技大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:TN791
【相似文献】
相关期刊论文 前10条
1 牛海飞;熔丝测试器[J];家庭电子;1998年10期
2 张树弼;低压熔丝熔断原因及更换[J];家庭电子;2003年12期
3 顾波;;集成电路储存器激光熔丝修复技术的挑战和前景[J];集成电路应用;2003年08期
4 Thomas Hubmann;Brian Jones;Diane Cupples;;正确选择合适的熔丝[J];今日电子;2007年07期
5 王刚;李平;李威;张国俊;谢小东;姜晶;;反熔丝的研究与应用[J];材料导报;2011年11期
6 杨朝苏 ,鹿玉龙;多晶硅电学特性研究之Ⅴ:多晶硅熔丝的电编程性质[J];微电子学;1986年01期
7 叶林;;熔丝测试器[J];实用电子文摘;1997年09期
8 奚文浩;声光报警熔丝[J];电子世界;2001年08期
9 奚文浩;;自制声光报警熔丝[J];电子制作;2001年06期
10 张鹏辉;王己钢;;熔丝类电路的修调探索[J];电子与封装;2010年04期
相关会议论文 前5条
1 周行星;;华东500kV变电站并联电容器熔丝故障调查及反措研究[A];2004年电力电容器学会论文集[C];2004年
2 杜川华;詹峻岭;赵洪超;朱小锋;;ONO反熔丝结构的电离辐照性能研究[A];中国核科学技术进展报告——中国核学会2009年学术年会论文集(第一卷·第6册)[C];2009年
3 赵聚朝;;反熔丝FPGA的γ总剂量效应[A];中国工程物理研究院科技年报(2001)[C];2001年
4 杜川华;詹峻岭;;ONO反熔丝FPGA抗电离辐照性能研究[A];第十届全国抗辐射电子学与电磁脉冲学术年会论文集[C];2009年
5 张健;孙辉先;陈晓敏;安军社;;反熔丝FPGA的可靠性设计措施[A];第二十三届全国空间探测学术交流会论文摘要集[C];2010年
相关重要报纸文章 前9条
1 韩素芹;熔丝熔断的原因及处理[N];中国电力报;2004年
2 西安 李荣;新颖家用电子熔丝电路[N];电子报;2012年
3 青岛 孙海善;一款实用电子熔丝电路[N];电子报;2014年
4 ;高激光吸收的铜熔丝及其制造方法[N];中国有色金属报;2002年
5 ;高激光吸收的铜熔丝及其制造方法[N];中国有色金属报;2003年
6 西安 沈友;延迟式电子熔丝[N];电子报;2014年
7 安徽 汪江;熔丝的安全应用[N];电子报;2001年
8 广西 黄毓勇;写黑卡的小经验[N];电子报;2006年
9 成都 史为;电子熔丝[N];电子报;2006年
相关博士学位论文 前3条
1 魏潇然;熔丝沉积成型几何计算关键技术研究[D];西北大学;2016年
2 张大华;反熔丝FPGA布局布线算法研究及CAD软件开发[D];电子科技大学;2015年
3 黄小毛;熔丝沉积成形若干关键技术研究[D];华中科技大学;2009年
相关硕士学位论文 前10条
1 吴方明;反熔丝FPGA芯片的布线资源规划与设计实现[D];电子科技大学;2017年
2 郑策;对反熔丝结构FPGA的分析与研究[D];辽宁大学;2015年
3 孙源;基于嵌入式Linux平台的熔丝沉积成形控制系统研究[D];华中科技大学;2014年
4 施雨农;基于STM32与MCX314的熔丝沉积成型机控制系统研究[D];华中科技大学;2014年
5 树西;304不锈钢电子束熔丝沉积工艺及稳定性研究[D];哈尔滨工业大学;2016年
6 赵梦雅;中压配电网电压互感器熔丝熔断防治措施的研究[D];华北电力大学;2016年
7 胥峥;基于压变熔丝熔断的机理分析与专家系统研究[D];江苏大学;2016年
8 姜敏;E-fuse单元性能测试和外围电路研究[D];复旦大学;2008年
9 杜海军;反熔丝FPGA的编程结构研究[D];吉林大学;2007年
10 石雅先;反熔丝FPGA设计技术研究[D];电子科技大学;2011年
,本文编号:2241451
本文链接:https://www.wllwen.com/kejilunwen/dianzigongchenglunwen/2241451.html