基于机器学习算法的IGBT模块故障预测技术研究
[Abstract]:As an important high-power switch device, IGBT (Insulated Gate Bipolar Transistor, insulated gate bipolar transistor (IGBT), it has been applied in many fields and has a broad prospect. However, IGBT modules that work long hours in high-intensity environments may gradually age, or even fail. Therefore, the real-time fault prediction of IGBT module can not only reduce the cost of daily maintenance, but also avoid serious accidents caused by device failure. Based on this problem, this paper studies the IGBT fault prediction technology combined with machine learning algorithm. The main work of this paper is as follows: firstly, the working characteristics, failure reasons and degradation parameters of IGBT module are studied, and the transient peak voltage of turn-off state is selected as the observation parameter to process the aging data provided by the NASAPCoE research center. The peak voltage degradation data needed to predict the experiment are obtained. Secondly, the regression algorithm and neural network algorithm in the field of machine learning are deeply studied, and the algorithm model is built by using Google open source platform TensorFlow to train and predict the voltage degradation data of off peak. The results show that the long and short term memory cycle neural networks optimized by RMSProp and batch standardization have high prediction accuracy and training speed, and can be used to predict IGBT degradation data. Finally, in order to improve the efficiency of equipment maintenance, a IGBT real-time fault prediction software system based on B / S architecture is designed. The prediction of historical data is accelerated by stochastic gradient descent method, and the prediction of real-time data is realized by means of rolling prediction, which effectively avoids the problem of error accumulation caused by long-term prediction. The system realizes the function of IGBT fault prediction based on cyclic neural network algorithm, which has practical significance.
【学位授予单位】:北京交通大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:TN322.8
【参考文献】
相关期刊论文 前10条
1 李亚萍;周雒维;孙鹏菊;;IGBT功率模块加速老化方法综述[J];电源学报;2016年06期
2 谢宏宇;侯艳;李康;;基于正则化回归的组学数据变量筛选方法[J];中国卫生统计;2016年04期
3 杨会玲;;高速列车牵引变流器直流电压脉动的研究[J];电子设计工程;2016年15期
4 杨经伟;王念春;;IGBT模型优化及其在Buck变换器中的功耗分析[J];电源技术;2015年11期
5 杜雄;李高显;刘洪纪;孙鹏菊;周雒维;;风速概率分布对风电变流器中功率器件寿命的影响[J];电工技术学报;2015年15期
6 赵翠荣;;基于支持向量机的汽车故障预测贝叶斯网络推理系统研究[J];巢湖学院学报;2015年03期
7 毛娅婕;周雒维;杜雄;孙鹏菊;;IGBT加速老化实验研究[J];电源技术;2014年12期
8 刘宾礼;刘德志;唐勇;陈明;;基于加速寿命试验的IGBT模块寿命预测和失效分析[J];江苏大学学报(自然科学版);2013年05期
9 韩东;杨震;许葆华;;基于数据驱动的故障预测模型框架研究[J];计算机工程与设计;2013年03期
10 范庚;马登武;张继军;;一种基于小样本数据的装备故障预测方法[J];弹箭与制导学报;2012年04期
相关硕士学位论文 前5条
1 邴欣;机器学习在推荐系统中的应用[D];山东大学;2016年
2 朱炯炯;IGBT模块故障预测技术[D];电子科技大学;2014年
3 李鹏;高压大功率IGBT测试平台的研制及相关问题研究[D];浙江大学;2012年
4 陈永淑;IGBT的可靠性模型研究[D];重庆大学;2010年
5 邓鹏飞;高速公路供电站风力及光伏发电逆变控制器的研究[D];长沙理工大学;2008年
,本文编号:2275246
本文链接:https://www.wllwen.com/kejilunwen/dianzigongchenglunwen/2275246.html