高电源抑制比带隙基准电压源设计
[Abstract]:When the temperature or the supply voltage VDD changes, the output voltage of the bandgap voltage reference source is almost unchanged. This excellent performance makes bandgap reference play an important role in many circuit modules. With the development of analog integrated circuits, more and more analog engineers and scholars favor how to design high performance bandgap reference. Under this background, the high power rejection ratio bandgap voltage reference is studied in this paper. In this paper, the significance of bandgap reference research and the research focus at home and abroad are investigated. Then, the principle of positive and negative temperature coefficient is analyzed, the loop gain of bandgap reference and the condition of ensuring loop stability are deduced, and the influence of amplifier offset voltage on the output voltage precision of bandgap reference is discussed. The bandgap reference designed in this paper has three characteristics: low output voltage, high power supply rejection ratio and low temperature drift coefficient. The bandgap reference consists of four different parts, which are the core circuit of bandgap reference, amplifier, preregulation circuit and startup circuit. In this paper, the working principle of each part of the circuit is analyzed and the mathematical derivation is carried out, and the results of software simulation are compared with the requirements. The difficulty of circuit design lies in the design of preregulation circuit and how to ensure that the circuit still meets the requirements of each process angle. In this paper, the current summation mode is adopted to achieve the purpose of low voltage output. The voltage pre-regulation method improves the power supply rejection ratio and carries out certain temperature compensation. Through the simulation of the circuit, it is found that when the VDD=3.3V, process angle is also different, the simulation results meet the design requirements. Take the tt process angle as an example, the output is 0.8V, the power suppression ratio is 108.36d B@ 100HzN, the temperature drift coefficient of 10k Hz; is 2.65ppm/ 掳C, and the response time is 5.9 渭 s. The simulation results meet the design requirements.
【学位授予单位】:哈尔滨理工大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:TN432
【相似文献】
相关期刊论文 前10条
1 张啸诚;邢建力;;一种高电源抑制比和高精度带隙电压源设计[J];信息与电子工程;2012年03期
2 袁晓波;徐东明;谢庆胜;;一种高电源抑制比的LDO电路的设计[J];中国集成电路;2010年01期
3 付秀兰;黄英;向蓓;汤志强;;一种高电源抑制比的基准电压源设计[J];合肥工业大学学报(自然科学版);2009年04期
4 王磊;王刚;许博谦;;一种高电源抑制比的LDO电路设计[J];长春理工大学学报(自然科学版);2012年02期
5 李泳佳;夏晓娟;;高电源抑制比的CMOS亚阈值多输出电压基准[J];电子设计工程;2009年12期
6 方圆;周凤星;张涛;张迪;;一种高电源抑制比全工艺角低温漂CMOS基准电压源[J];电子设计工程;2012年24期
7 程刚;白忠臣;王超;秦水介;;一种高电源抑制比的CMOS带隙基准电压源设计[J];电子设计工程;2013年08期
8 刘中伟;夏素静;周伟;;一种宽输入范围高电源抑制比的带隙基准电路[J];科协论坛(下半月);2011年05期
9 蒋浩;汪东旭;赵新江;;一种高电源抑制比的带隙基准电路[J];微计算机信息;2006年14期
10 吴谨;常昌远;石超;;一种高电源抑制比曲率补偿带隙基准电压源[J];电子与封装;2008年06期
相关硕士学位论文 前6条
1 杜皎;一款高电源抑制比低压差线性稳压器设计[D];复旦大学;2012年
2 肖正;高瞬态响应高电源抑制比LDO[D];长沙理工大学;2015年
3 曹应伟;高电源抑制比带隙基准电压源设计[D];哈尔滨理工大学;2017年
4 黄圣专;高电源抑制比低压差线性稳压器(LDO)设计[D];复旦大学;2011年
5 张娜娜;高电源抑制比低压差线性稳压器的设计与研究[D];合肥工业大学;2007年
6 邵亚利;大电流高电源抑制比的低压差线性稳压器[D];浙江大学;2011年
,本文编号:2286025
本文链接:https://www.wllwen.com/kejilunwen/dianzigongchenglunwen/2286025.html