微波开关芯片的研究与设计
[Abstract]:With the development of wireless communication technology, modern microwave system requires more and more cost and integration. Using complementary metal oxide semiconductor (CMOS) process to integrate all modules of microwave transceiver system on the same silicon wafer has always been a hot topic at home and abroad. At present, microwave power amplifier and microwave switch are the main limiting factors for the full integration of microwave front-end due to the requirement of high power processing capability. This paper mainly studies the silicon-based CMOS microwave switch to promote the progress and development of microwave system. In this paper, the key performance parameters of microwave switch are studied in detail, and the methods to improve the power processing ability are put forward. At the same time, the model and working mechanism of the key passive devices are also explored to guide the design of high quality passive devices. The substrate conductivity and parasitic capacitance of three-well silicon complementary metal oxide semiconductor (Triple-well Bulk CMOS) process) make it difficult to realize low insertion loss of high frequency microwave bulk silicon CMOS switch. Therefore, based on lumped equivalent transmission line structure, a high frequency microwave switch is designed to reduce the substrate leakage loss of transistors and obtain low insertion loss performance. The design of high frequency and high isolation microwave switch is based on low insertion loss microwave switch, which is realized by structure cascade, which gains isolation by sacrificing insertion loss, and improves power processing ability by transistor cascade technology and feedforward capacitor technology. High resistance silicon substrate can be used to mitigate the substrate coupling effect due to the buried oxygen layer in the silicon (SOI) process on insulators. The low frequency microwave switch uses the silicon N communication field effect transistor (FB SOI NMOSFET),) on the floating insulator to adopt the series-parallel structure and the transistor cascade to improve the power processing ability. In this paper, the encapsulation is also considered, and the simulation and design with the switch are carried out to reduce the influence of the package on the microwave performance of the switch. The test results of high frequency low insertion loss microwave switches show that at 16 GHz, the test insertion loss of transmission mode and receiving mode is 4.3dB and 4.1 dB, the isolation degree is 26dB and 24 dB, and the input 0.1dB power compression point (IP0.1dB) and input 1dB power compression point (IP1dB) are 8dBm and 13.5 dBm, respectively. The test results of high frequency and high isolation microwave switches show that at 17.5 GHz, the insertion loss of transmit mode and receiving mode is 2.7dB and 2.3 dB, the isolation degree is 42dB and 31 dB, and the IP1dB of transmitting mode is 22dBmP0.1dB is 17dBmm. The simulation results of low frequency and high power processing power switches show that the insertion loss of each operation mode is less than 1.1 dB, and the isolation degree is greater than 25 dB IP 1dB about 44dBmU IP 0.1dB about 41dBmm. The designed microwave CMOS switch basically accords with the expected performance requirements, and it has a certain role in promoting the development of silicon-based CMOS full integrated microwave system and reference significance.
【学位授予单位】:电子科技大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:TN63
【相似文献】
相关期刊论文 前10条
1 Dale Cigoy;;射频和微波开关测试系统基础[J];数字社区&智能家居;2009年06期
2 李士刚;王文伟;姚崇斌;;微波开关矩阵设计与使用[J];国外电子测量技术;2009年07期
3 任阿龙;胡文麒;;一种新型微波开关的设计与实现[J];电子测试;2011年04期
4 ;配置一个最佳的RF/微波开关系统[J];今日电子;2002年02期
5 马玉钦;蒋文斌;;关于大功率PIN微波开关研制的探讨[J];航天电子对抗;1987年03期
6 ;Racal公司可为用户定制微波开关[J];计算机测量与控制;2007年01期
7 Dale Cigoy;;射频和微波开关测试系统基础[J];电子设计应用;2009年03期
8 吕苗,赵正平,娄建忠,顾洪明,胡小东,李倩;一种DC~5GHz串联微波开关的温度特性和功率处理能力的测试与分析(英文)[J];半导体学报;2004年07期
9 ;Microsemi推出新的具有高可靠性的微波开关驱动器系列产品[J];电源技术应用;2009年04期
10 来萍,李萍,郑廷圭;AS169微波开关电路的失效原因分析[J];电子质量;2003年08期
相关会议论文 前8条
1 刘斐珂;文光俊;庞宏;金海炎;严中;;单片微波开关技术及研究进展[A];中国通信学会第五届学术年会论文集[C];2008年
2 杨彪;段喜东;;宽带高隔离微波开关设计[A];2011年全国微波毫米波会议论文集(下册)[C];2011年
3 李立杰;;一种新型的微波开关——微机械微波开关[A];1999年全国微波毫米波会议论文集(上册)[C];1999年
4 李健开;唐小宏;;高速大功率PIN管微波开关研究[A];2005'全国微波毫米波会议论文集(第二册)[C];2006年
5 谢兴军;;MEMS微波开关的设计与仿真[A];中国工程物理研究院科技年报(2003)[C];2003年
6 赵希荣;;PIN管微波开关[A];1987年全国微波会议论文集(下)[C];1987年
7 周辉;;VXI微波开关模块的设计与实现[A];2010振动与噪声测试峰会论文集[C];2010年
8 冯坤;王福臣;过常宁;;G_aA_s单片微波开关[A];1985年全国微波会议论文集[C];1985年
相关硕士学位论文 前10条
1 吴奕蓬;微波开关芯片的研究与设计[D];电子科技大学;2017年
2 雷培林;基于光控微波开关的光纤—无线透明接入关键技术研究[D];电子科技大学;2014年
3 李文炬;基于SISL的微波开关研究与设计[D];电子科技大学;2017年
4 赵学敏;智能微波开关上位机软件和检测仪的设计与实现[D];西安石油大学;2012年
5 兰立涛;光控微波开关及其在可重构天线中的应用[D];电子科技大学;2013年
6 何方;智能微波开关的设计与实现[D];西安石油大学;2012年
7 丛超;智能微波开关接收器检测仪的设计与实现[D];西安石油大学;2014年
8 陈文奇;智能微波开关发射器检测仪的设计与实现[D];西安石油大学;2014年
9 谢兴军;静电驱动MEMS微波开关设计与仿真[D];重庆大学;2004年
10 刘鹏举;高隔离度光控微波开关的理论与技术研究[D];电子科技大学;2008年
,本文编号:2291929
本文链接:https://www.wllwen.com/kejilunwen/dianzigongchenglunwen/2291929.html