基于LabVIEW的低噪声超快泵浦-探测系统开发及应用
[Abstract]:Ultra-fast pump-detection system can distinguish the change process of things in femtosecond order of magnitude. It has important applications in physics, biology, chemistry and medicine. It is necessary to change the optical path difference between the pump light and the probe light hundreds of times in the ultra-fast pumping-detection experiment and to record the power of the detection light corresponding to the optical path difference. Tedious data recording and optical path difference control are difficult to be accomplished manually. Therefore, automatic control system is the key to its application. In addition, the laser source used in the ultra-fast pump-probe system is usually jitter, which results in a low SNR of the measured results. How to obtain high SNR detection signal is also the key technology of pump-detection. This paper focuses on the design and construction of a low-noise ultra-fast pump-probe automatic control system. Based on Lab VIEW, the ultra-fast pump-probe automatic measurement system is developed, and the signal-to-noise ratio (SNR) characteristics of the system are studied in combination with the phase-locked amplifier. The main work of this paper is as follows: (1) based on the Lab VIEW virtual instrument development platform, an automatic control software for ultra-fast pumping and detection is designed. The software realizes the automatic control of the system and the automatic collection of data by means of the RS232 and GPIB protocol to control the instrument in the measuring system. Moreover, the automatic control software can map the measurement data in real time, which reduces the workload of the pump-detection experiment system. (2) combining the optical chopper and the phase-locked amplifier, a low-noise ultra-fast pump-detection system is built. In an ultra-fast pump-probe system, a chopper is used to modulate the laser to a specific frequency. The chopper output signal is input to the phase-locked amplifier as the reference signal. The phase-locked amplifier only detects the same component of the measured signal as the reference signal frequency, while the other frequency components are greatly suppressed. If the laser power is measured directly by the power meter, the variance is 0.0001, and when the integral time constant is set to 3 s, the variance is 0.000006 when the phase-locked amplifier is used to measure the laser power. The effectiveness of the proposed noise reduction method is verified by testing the ultra-fast kinetic characteristics of carbon disulfide by ultra-fast pump detection system.
【学位授予单位】:湖南大学
【学位级别】:硕士
【学位授予年份】:2015
【分类号】:TP311.52;TN722;TN24
【参考文献】
相关期刊论文 前10条
1 张卫东;李力;张茂森;尹健昭;徐亚敏;;基于虚拟仪器和PXI总线的电磁阀控制系统研制[J];火箭推进;2015年01期
2 宋洪磊;闫理贺;司金海;侯洵;;基于超快光克尔效应的超短脉冲光限幅器[J];中国激光;2015年02期
3 刘蓉;田进寿;王强强;王超;温文龙;卢裕;刘虎林;曹希斌;王俊锋;赵卫;;磁透镜内径比对条纹变像管性能的影响[J];真空科学与技术学报;2014年10期
4 乔自文;高炳荣;陈岐岱;王海宇;王雷;;飞秒超快光谱技术及其互补使用[J];中国光学;2014年04期
5 胡华;钟洁;;新型锁相放大器的设计[J];电子测量技术;2014年08期
6 刘培培;;虚拟仪器及其应用[J];物理通报;2014年06期
7 戴洪德;孙玉玉;吴晓男;吴光彬;;虚拟仪器在飞机仪表实验教学中的应用探索[J];仪表技术;2014年03期
8 张黎;蔡亮;;基于LabVIEW的虚拟信号发生器的设计与实现[J];国外电子测量技术;2014年01期
9 李文禄;赵治华;唐健;肖欢;李毅;何方敏;;模拟乘法器零漂抑制技术[J];海军工程大学学报;2013年04期
10 王治昊;余锦;樊仲维;葛文琦;涂龙;貊泽强;郭广妍;王昊成;;全固态被动调Q皮秒激光技术研究进展[J];发光学报;2013年07期
相关博士学位论文 前4条
1 冯亚辉;超快激光诱导分子排列及非线性光学效应[D];华东师范大学;2014年
2 彭俊松;超快光纤激光器及其动力学特性研究[D];上海交通大学;2013年
3 孔德贵;二硫化碳等几种非线性材料的飞秒光学非线性研究[D];哈尔滨工业大学;2010年
4 石光;应用泵浦探测4F成像技术研究光学非线性动力学[D];哈尔滨工业大学;2009年
相关硕士学位论文 前7条
1 邵龙;飞秒泵浦探测方法研究二氧化氮和碘甲烷的光解离动力学[D];吉林大学;2014年
2 葛琪妮;基于超快激光泵浦—探测干涉的精密测量技术研究[D];北京工业大学;2014年
3 聂娅琴;基于锁相放大器的微弱信号检测研究[D];中南大学;2014年
4 周茜;基于非线性频率上转换的中红外波段少光子探测及成像[D];华东师范大学;2014年
5 崔随雄;基于LabVIEW的微弱光电信号检测系统设计[D];哈尔滨理工大学;2013年
6 许文佳;基于FPGA的数字锁相放大器的设计与研究[D];吉林大学;2012年
7 叶伟;基于虚拟仪器的宽频噪声检测系统实现与应用[D];西安电子科技大学;2012年
,本文编号:2293582
本文链接:https://www.wllwen.com/kejilunwen/dianzigongchenglunwen/2293582.html