微细通道内液滴生成及内部混合强化
[Abstract]:With the rapid development of MEMS, the miniaturization and high integration of instrument and equipment have become one of the mainstream trends in the development of modern equipment. The microfluidic chip integrates the functions of mixing, separating, diluting and detecting on a microchip, which is widely used in biochemistry analysis, medicine and life science and so on. Droplet microfluidic chip is a new branch in the field of microfluidic in recent years. Each droplet can be regarded as an independent reactor. Compared with the traditional biochemical reactor, the droplet microfluidic chip has the advantages of low sample consumption, fast reaction and no cross contamination, so it can be widely used in chemical synthesis. Preparation of nanomaterials, cell analysis, drug screening and many other fields. The formation of droplets and the control of internal mixing are the key to achieve the above functions, but the related system research is not thorough. In this paper, the formation of droplets and their internal mixing properties are studied. In this paper, the method of visualization experiment is used to study the formation of droplets in microchannels and the enhancement of their internal mixing. At first, microdroplets were formed in 200 渭 m T microchannels by continuous phase dimethyl silicone oil shearing dispersed phase deionized water. The effects of continuous phase flow rate, dispersed phase flow rate and continuous phase viscosity on the formation size of microdroplets were studied. A new method for the formation of ultrafine droplets in large scale T microchannels by photothermal effect is proposed. Secondly, the enhancement effect of spiral microchannels on the internal mixing of droplets is studied, and the quantitative analysis is carried out. Finally, the change of the internal flow state of microdroplets under lateral shear was measured by PIV technique and the influence of this change on the internal mixing performance of droplets was analyzed. Based on the above research, the following conclusions are drawn: 1 the size of droplet formation decreases with the increase of the flow rate of the continuous phase, increases with the increase of the velocity of the dispersed phase, and decreases with the increase of the viscosity of the continuous phase in the T-shaped microchannel. At the same time, the superfine droplets were formed by evaporating and condensing water phase change in T type structure by the photothermal effect of laser. During the working process, liquid water is heated by laser to form steam, which is shearing by continuous phase to form steam plug, which can form ultramicro droplets after condensing. Since the droplet is formed by condensation, the size of the steam plug directly determines the size of the droplet. It is found that the size of the steam plug increases with the increase of laser power. By studying the mixing performance of droplets in straight microchannels and spiral microchannels, it is found that the mixing efficiency of droplets in the straight microchannels with T-shaped structure increases with the increase of the continuous phase. With the increase of the velocity of the dispersed phase, it weakens. The spiral microchannels have the same trend. More importantly, the study found that both in unit time and in unit length, relative to straight microchannels, The secondary flow caused by helical structure in the spiral microchannel improves the mixing efficiency of the droplets. 3 when the droplets are shearing laterally, the droplets are subjected to shear force, and the internal flow field deflects to the shear direction. At the same time, the flow rate in the droplet can be increased, thus the mixing in the droplet can be enhanced. The strength increases with the increase of the flow velocity of the fluid and the velocity of the dispersed phase.
【学位授予单位】:重庆大学
【学位级别】:硕士
【学位授予年份】:2015
【分类号】:TN492
【相似文献】
相关期刊论文 前10条
1 王景龙;陈文武;马月仁;刘宇时;蔡龙;吕国盛;邵明君;金玉奇;桑凤亭;;均匀液滴的形成机理及实验研究[J];强激光与粒子束;2006年05期
2 扈映茹;吕岑;宋晨;;液滴分析技术[J];激光与光电子学进展;2008年01期
3 蔡龙飞;徐春秀;;液滴微流控研究重要进展[J];韩山师范学院学报;2012年03期
4 白锋;洪芳军;;介质上电润湿液滴输运、合并及振荡实验研究[J];微纳电子技术;2012年08期
5 刘兆斌;李鸿云;张颖;;根据液滴平均直径确定硝化器的最佳中试规模[J];太原机械学院学报;1991年04期
6 冯国红;裘祖荣;廖和琴;;温度对液滴指纹图水质识别的影响分析[J];传感技术学报;2012年04期
7 许晓威;陈立国;陈涛;孙立宁;;悬空零电极介电湿润芯片的设计[J];光学精密工程;2014年01期
8 孙伟民;王小力;张志林;万众;刘强;郭明磊;;利用折射光场分析液滴中光传播规律[J];光学学报;2008年07期
9 孙宇丹;刘强;;光纤液滴传感器实现汽油溶液的鉴别[J];传感器世界;2009年10期
10 ;“量子液滴”的稳定性可用于研究光和物质的特定形式[J];中国科技信息;2014年06期
相关会议论文 前10条
1 左子文;王军锋;霍元平;谢立宇;胡维维;;气流中荷电液滴演化的数值模拟[A];中国力学大会——2013论文摘要集[C];2013年
2 贺丽萍;夏振炎;;低流量微管末端液滴形成及破碎的研究[A];第八届全国实验流体力学学术会议论文集[C];2010年
3 熊燃华;许明;李耀发;杨基明;罗喜胜;于勇波;赵铁柱;;液-液两相介质中液滴在冲击作用下演变模式[A];第十四届全国激波与激波管学术会议论文集(下册)[C];2010年
4 刘华敏;刘赵淼;;液滴形成与下落过程分析[A];北京力学会第13届学术年会论文集[C];2007年
5 郑哲敏;;液滴与液面碰撞时发生环形穿入的条件[A];郑哲敏文集[C];2004年
6 刘伟民;毕勤成;张林华;孟凡湃;薛梅;;液滴低压闪蒸形态和温度变化的研究[A];山东省暖通空调制冷2007年学术年会论文集[C];2007年
7 吕存景;;微尺度下的液滴黏附力学[A];庆祝中国力学学会成立50周年暨中国力学学会学术大会’2007论文摘要集(下)[C];2007年
8 陈雪;朱志强;刘秋生;;固体表面液滴热毛细迁移的实验研究[A];中国力学大会——2013论文摘要集[C];2013年
9 郭加宏;胡雷;戴世强;;液滴冲击固体表面液膜的实验和数值研究[A];第九届全国水动力学学术会议暨第二十二届全国水动力学研讨会论文集[C];2009年
10 魏明锐;赵卫东;孔亮;沃敖波;;液滴修正零维蒸发模型的推导与分析[A];2007年APC联合学术年会论文集[C];2007年
相关重要报纸文章 前2条
1 王小龙;新法可让液滴按需形成任意形状[N];科技日报;2014年
2 孙文德;液滴透镜[N];中国知识产权报;2001年
相关博士学位论文 前10条
1 刘栋;液滴碰撞及其融合过程的数值模拟研究[D];清华大学;2013年
2 周源;蒸汽爆炸中熔融金属液滴热碎化机理及模型研究[D];上海交通大学;2014年
3 马玉龙;液滴辐射器辐射与蒸发特性的数值研究[D];中国科学技术大学;2010年
4 古淑青;微流控液滴单细胞分析系统的研究[D];浙江大学;2011年
5 马理强;介观尺度液滴动力学特性的光滑粒子动力学模拟[D];中北大学;2013年
6 毕菲菲;液滴撞击弯曲壁面的动力学过程研究[D];大连理工大学;2015年
7 李西营;液滴撞击固体壁面的实验及理论研究[D];大连理工大学;2010年
8 陈彬剑;T型微通道内液滴及气泡生成机理的研究[D];山东大学;2011年
9 王宏;梯度表面能材料上液滴运动及滴状凝结换热[D];重庆大学;2008年
10 宋晴;基于液滴分析技术和液滴指纹图的液体识别方法的研究[D];天津大学;2005年
相关硕士学位论文 前10条
1 崔艳艳;液滴撞击倾斜壁面动力学过程研究[D];大连理工大学;2010年
2 吴方;微流控系统的高通量液滴检测[D];天津理工大学;2015年
3 龚翔;电场作用下液滴的聚结特性及高压静电破乳研究[D];集美大学;2015年
4 李艳斌;工业厂房中敞口槽散发纯水液滴的蒸发和运动规律[D];西安建筑科技大学;2015年
5 张慧;液滴在随机粗糙表面的铺展动力学仿真研究[D];苏州大学;2015年
6 苏凤婷;基于单探针和液滴辅助的微构件转移方法和实验研究[D];哈尔滨工业大学;2015年
7 雷庆;液滴与疏水和超疏水固体表面作用的研究[D];北京化工大学;2015年
8 伍福璋;微米级别因素对动态接触角影响的实验研究[D];南昌大学;2015年
9 李德伟;液滴碰壁铺展与振荡的研究[D];大连理工大学;2015年
10 李志江;基于液滴喷射技术的塑料增材制造系统研究与开发[D];北京化工大学;2015年
,本文编号:2300653
本文链接:https://www.wllwen.com/kejilunwen/dianzigongchenglunwen/2300653.html