核自适应滤波算法及其在噪声对消与信道均衡中应用
[Abstract]:The linear adaptive filtering algorithm has some advantages in solving some problems, but the problems studied in practice are often related to some nonlinear problems. The performance of the linear algorithm in dealing with nonlinear problems is not satisfactory, for example, in the applications of noise cancellation and channel equalization. The kernel method (Kernel Methods) is introduced into the nonlinear field with the research of support vector machine (SVM). The kernel method provides a technical path for the study of nonlinear problems. The linear algorithm is used to deal with the nonlinear relations in the original space in a suitable high dimensional feature space. Kernel method has been widely used in pattern recognition and image processing. At present, there are many linear adaptive filtering algorithms. It is of great theoretical significance and value to study more and more effective nonlinear filtering algorithms with the help of kernel method. Kernel method is an effective technique to induce nonlinear algorithm by linear algorithm. Aiming at the shortcoming of the least mean square (LMS) algorithm in dealing with nonlinear problems, two novel nonlinear adaptive filtering algorithms are studied by using the kernel method in pattern recognition. The nonlinear versions of normalized minimum mean square (NLMS) algorithm and fourth-order error signal minimization (LMF) algorithm are called KNLMS algorithm and KLMF algorithm respectively. The main work of this paper is summarized as follows: (1) two kernel adaptive filtering algorithms, kernel normalized least mean square (KNLMS) algorithm and kernel fourth-order error signal minimization (KLMF) algorithm, are studied by using the kernel method principle. Numerical results of the two algorithms are presented. (2) the application of the proposed KLMF algorithm in noise cancellation is discussed. The simulation results show the availability and effectiveness of the proposed algorithm. (3) the application of the proposed KLMF algorithm in nonlinear channel equalization is discussed. The simulation results show the availability and advantage of the algorithm, and analyze the influence of different parameters on the performance of the algorithm.
【学位授予单位】:西华大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:TN713;TN911.5
【参考文献】
相关期刊论文 前10条
1 宋紫毓;彭盛亮;赵睿;;可见光通信中一种基于分段误差函数的变步长LMS算法[J];信号处理;2017年04期
2 马令坤;吴波;毛红艳;;改进的变误差宽度变阶数LMS算法[J];现代电子技术;2017年01期
3 刘牮;李_g;;一种用于信号估计的改进变步长LMS算法[J];电力科学与工程;2016年10期
4 李亮;;基于再生核Hilbert空间的非线性信道均衡算法[J];计算机工程与应用;2016年16期
5 陈绪君;朱宇芳;胡君红;马得宇;;滑动窗近似线性依赖稀疏的核递推最小二乘算法[J];计算机工程;2016年08期
6 管四海;李智;;基于修正反正切函数的变步长LMS算法[J];中国科技论文;2016年14期
7 李丽;石翠萍;李会;;VoIP回声消除中LMS改进算法的研究[J];高师理科学刊;2016年06期
8 王蒙;赵建平;张炳婷;;一种基于双曲正割函数的变步长LMS算法[J];通信技术;2016年06期
9 王洪诚;王蕾;沈霞;杨欣荣;王正;;基于改进增益型自适应LMS算法的谐波检测方法[J];电力系统保护与控制;2016年05期
10 林云;雷洋;曾俊俊;;抗冲击噪声的核对数最小绝对差算法[J];电子技术应用;2016年02期
相关硕士学位论文 前3条
1 赵一逍;基于核函数的自适应滤波算法研究及其系统实现[D];北京理工大学;2015年
2 陈乾;核自适应滤波算法研究[D];华中师范大学;2014年
3 苗秋园;核自适应滤波算法的研究[D];浙江大学;2012年
,本文编号:2317378
本文链接:https://www.wllwen.com/kejilunwen/dianzigongchenglunwen/2317378.html