长行程精密直线运动平台的滑模控制研究
[Abstract]:A large number of moving parts are involved in the lithography system, their forms and indexes are different, and the complex motion such as changing, stepping, scanning and so on are completed through coordination, but their essence belongs to the motion platform. Due to the high performance requirement of motion control, it is necessary to study the motion platform. Therefore, this paper selects the typical long-stroke precision linear motion platform in the lithography system to carry out the research. In order to suppress all kinds of interference on the platform, the sliding mode control is applied to the platform in this paper. The effectiveness of the controller is verified by simulation and experiment, and the tracking accuracy and rapidity of the system are improved. Firstly, the working characteristics, the structure and the performance index of the platform are introduced, and the S curve is designed as the reference track according to the motion characteristics of the platform. By analyzing the disturbance on the platform, it is pointed out that the nonlinear disturbance, parameter perturbation, model uncertainty and mechanical resonance are not conducive to the control of the platform. Finally, the frequency domain response of the platform is obtained by the sweep experiment, and the second order transfer function is used to fit the platform transfer function. Secondly, in order to overcome the disadvantages of the platform and improve the performance of the system, a sliding mode control method using improved particle swarm optimization (PSO) is proposed on the basis of the transfer function obtained by sweep frequency. The linear sliding mode surface is used to improve the sliding mode term through the boundary layer method in order to suppress buffeting. Finally, the simulation results show that the interference suppression ability is stronger than the PID control method, and better tracking accuracy and rapidity are obtained. Thirdly, although the performance of the sliding mode algorithm is improved compared with the traditional PID algorithm, there are some problems, such as the need to improve the rapidity and the more serious buffeting problem, so it is necessary to improve the algorithm. In order to improve the rapidity, the former sliding mode surface is replaced by the terminal sliding mode surface, which improves the speed of the state reaching the sliding mode surface and improves the accuracy. In order to suppress buffeting, the boundary layer method is abandoned and the second-order sliding mode is chosen. This control method can greatly suppress the chattering and improve the tracking accuracy without reducing the anti-disturbance ability of the sliding mode. The simulation results of three sliding mode control methods show the superiority of the second order nonsingular fast terminal algorithm. Finally, every link of the motion platform control system is introduced, the above control methods are realized on the hardware platform, and the motion platform is controlled for experiment. The control algorithms are compared in terms of tracking accuracy, rapidity and buffeting. The advantages of the sliding mode of the second order nonsingular fast terminal are proved, and the performance of the system is improved.
【学位授予单位】:哈尔滨工业大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:TP273;TN405
【参考文献】
相关期刊论文 前10条
1 柳瑞;张驰;沈林勇;赵飞;董良;李荣;;直线电动机伺服系统精确自动建模方法研究[J];微特电机;2016年04期
2 马琳;付志远;操亚华;;增量式光栅传感器和绝对式光栅传感器发展现状及趋势[J];硅谷;2013年09期
3 孟德远;陶国良;朱笑丛;班伟;钱鹏飞;;气动位置伺服系统运动轨迹跟踪控制[J];农业机械学报;2013年04期
4 丁世宏;李世华;;有限时间控制问题综述[J];控制与决策;2011年02期
5 李升波;李克强;王建强;高锋;;非奇异快速的终端滑模控制方法[J];信息与控制;2009年01期
6 任子晖;王坚;;一种动态改变惯性权重的自适应粒子群算法[J];计算机科学;2009年02期
7 冯亚林;张蜀平;;集成电路的现状及其发展趋势[J];微电子学;2006年02期
8 王勇,刘志刚,薄锋,朱健强;五自由度纳米级定位工作台的设计研究[J];中国机械工程;2005年15期
9 董吉洪,田兴志,李志来,王明哲;100nm步进扫描投影光刻机工件台、掩模台的发展[J];光机电信息;2004年05期
10 王敏,杜克林,黄心汉;机器人滑模轨迹跟踪控制研究[J];机器人;2001年03期
相关博士学位论文 前3条
1 王一光;滑模变结构控制在扫描光刻系统中的应用研究[D];哈尔滨工业大学;2015年
2 王金鹏;超声电机驱动的大行程、高精度二维运动平台关键技术的研究[D];南京航空航天大学;2013年
3 申宇;滑模变结构控制中抖振的特性研究与抑制[D];西安电子科技大学;2012年
相关硕士学位论文 前3条
1 张之万;光刻机掩模微动台耦合误差分析及控制器设计[D];哈尔滨工业大学;2015年
2 杜威;专用多轴运动控制卡及其控制算法的研究[D];哈尔滨工业大学;2012年
3 谭志红;伺服控制系统的频域辨识及激励信号的研究[D];哈尔滨工业大学;2010年
,本文编号:2329844
本文链接:https://www.wllwen.com/kejilunwen/dianzigongchenglunwen/2329844.html