惯性行人导航系统的算法研究
[Abstract]:The common navigation system, in navigation satellite or ground beacon failure environment, navigation blind. Inertial navigation system, as an autonomous navigation system, has good concealment, stability and anti-interference. It can work all day, all weather, and all over the area. In recent years, inertial navigation system has become a research hotspot in the field of pedestrian navigation. However, pure inertial navigation has the characteristics of continuous accumulation of navigation errors, it is necessary to design an effective error correction method to improve the long-term navigation accuracy of the system. Based on the micro inertial sensor with small size and low cost, combined with the periodic characteristics of foot motion, this paper studies the application of zero-velocity correction assisted inertial navigation technology to pedestrian navigation. The main contents are as follows: 1. The initial alignment technology of strapdown inertial navigation system under static base is studied. Initial alignment is one of the key technologies of inertial navigation system, and its main purpose is to determine the initial conditions of the system. Based on the concept of error angle of Euler platform, this paper describes the misalignment angle between the theoretical navigation coordinate system and the computational navigation coordinate system, and deduces the systematic error model of the strapdown inertial navigation system under different misalignment angles. It lays a theoretical foundation for the research of error correction algorithm in this paper. 2. The gait detection method based on dynamic threshold and clustering analysis is studied. Because the existing gait detection methods do not fully and reasonably consider the influence of measurement value fluctuation on gait detection, most of the existing gait detection methods have some shortcomings, such as inaccurate detection results and sensitivity to detection parameters, etc. Furthermore, the correctness and effectiveness of the subsequent zero-speed correction method are affected. In this paper, an adaptive gait detection method based on clustering analysis is proposed by analyzing the function of each detection parameter and the coupling relationship between them in detail. This method is an improved flat area detection method. It can overcome the shortcomings of the existing detection methods and expand the feasible parameter space of the detection methods, and then improve the accuracy and reliability of gait detection. 3. A navigation error estimation method based on Kalman filter is studied. In the zero-velocity correction, the Kalman filtering algorithm can make full use of the coupling relationship between velocity error, attitude error and position error, and estimate and correct more navigation errors. In order to reduce the computational complexity and high order truncation error in the filtering process, to avoid the introduction of additional modeling errors and to reduce the possibility of filtering divergence, the original system equations are decomposed by indirect filtering principle. Then combining with the concrete application of pedestrian navigation, the decomposed error subsystem is simplified, and the reliability of zero velocity observation in support phase is analyzed. The sensor error is not modeled and estimated as an augmented state vector in the filtering process. 4 the navigation error estimation method based on fixed interval smoother is studied. The Kalman filtering algorithm can only estimate the navigation error in the support phase, and it is easy to cause the sudden change of navigation information when the swing phase is transitioned to the supporting phase. The fixed-interval smoothing algorithm can estimate the navigation error in the whole gait cycle and realize the steady transition of the gait phase, thus improving the accuracy and stability of the system. In order to make the smoothing algorithm meet the requirements of on-line operation, a reduced order smoothing filtering algorithm without modeling and estimating the position error and sensor error is designed without reducing the performance of the system. The error estimation, smoothing and correction of navigation error are carried out step by step to achieve the effect of quasi-real-time smoothing estimation.
【学位授予单位】:大连理工大学
【学位级别】:博士
【学位授予年份】:2015
【分类号】:TN713
【相似文献】
相关期刊论文 前10条
1 冷晓艳;;空中侦察图像连续拼接中的平滑算法研究[J];计算机工程与科学;2007年02期
2 卢捍华;;数字信号测量中的平滑算法[J];南京邮电学院学报;1988年02期
3 殷德奎,雷春,张保民;基于图像特征的多元平滑算法[J];激光与红外;2000年01期
4 沈志光;;数字图像平滑算法的探究[J];科学大众;2006年04期
5 郭武;吴义坚;;基于时域单元融合的拼接平滑算法[J];中文信息学报;2006年05期
6 李欣;孙懋珩;;稳健平滑算法的改进策略[J];中国图象图形学报;2008年04期
7 秦超英,戴冠中;估计动态系统噪声的平滑算法[J];控制理论与应用;1993年02期
8 周焰,王祖喜,李德华;基于弧长参数的曲线自适应平滑算法[J];红外与激光工程;2000年01期
9 张海洋,鞠九滨,胡亮;对NWS中资源性能预报算法的一个改进[J];吉林大学学报(理学版);2005年02期
10 魏丹,陈淑珍,陈彬,杨莘;梯度倒数加权平滑算法的改进与实现[J];计算机应用研究;2005年03期
相关会议论文 前6条
1 陈琰;高月芳;朱同林;;基于顶点属性的三维网格模型混合平滑算法[A];计算机技术与应用进展·2007——全国第18届计算机技术与应用(CACIS)学术会议论文集[C];2007年
2 尹勇;曹振海;祖漪清;;语境相关的音素级语音合成系统中拼接平滑算法研究[A];第九届全国人机语音通讯学术会议论文集[C];2007年
3 胡晟;张树武;徐波;;基于裁剪门限改进的Katz平滑算法[A];第七届全国人机语音通讯学术会议(NCMMSC7)论文集[C];2003年
4 朱莉;孟遥;赵铁军;;典型参数平滑算法在词性标注中的性能评价[A];语言计算与基于内容的文本处理——全国第七届计算语言学联合学术会议论文集[C];2003年
5 尚凤军;;自适应小波在X荧光谱分析中的应用[A];第二届全国信息获取与处理学术会议论文集[C];2004年
6 郭叔毅;李楠;张玲;胡伟宏;;如何正确使用ClariView优化MR图像质量[A];第八次全国中西医结合影像学术交流大会暨全国中西医结合影像学研究进展学习班论文集[C];2005年
相关博士学位论文 前1条
1 赵红宇;惯性行人导航系统的算法研究[D];大连理工大学;2015年
相关硕士学位论文 前5条
1 贾宇岗;混合估计自适应平滑算法研究[D];西北工业大学;2003年
2 顾彦慧;基于切向的网格平滑算法研究[D];河海大学;2005年
3 褚昆;基于互信息的统计语言模型数据平滑算法[D];哈尔滨工程大学;2009年
4 李争明;流媒体质量控制算法的应用研究及实现[D];清华大学;2005年
5 东方;基于阵列误差情况下相干信源DOA估计算法研究[D];吉林大学;2007年
,本文编号:2354017
本文链接:https://www.wllwen.com/kejilunwen/dianzigongchenglunwen/2354017.html