GaN基凹槽栅MOSFET器件设计与制备技术研究
[Abstract]:Due to polarization effect of AlGaN/GaN heterojunction, high concentration and high electron mobility of 2-D electron gas conduction channel are produced near the GaN side of the heterojunction surface, which makes AlGaN/GaN HEMT devices have low on-resistance and fast switching speed. Because of its high saturation current density, forward conduction has been paid more and more attention because of its advantages in device applications. However, conventional HEMT devices are normally open devices, which require negative voltage drive in practical application. The design of drive circuit is difficult, the cost is increased, and the negative voltage drive circuit does not have the function of failure protection, which makes the security of the system lower. Therefore, how to achieve high-performance enhanced GaN power electronic devices has become a hot research topic. In this paper, the grooved gate MOSFET device structure is used to realize the GaN enhanced device. The mechanism of the enhanced device with grooved gate structure is to weaken the polarization effect of the heterojunction by changing the thickness of the barrier layer below the gate, to exhaust the two-dimensional electron gas in the channel under the gate groove, and to complete the threshold voltage regulation. Thus, the enhanced device is realized. In this paper, the influence of gate groove etching depth T on the threshold voltage of the device is studied by means of simulation software, which provides a theoretical basis for subsequent experiments. Based on the theoretical analysis of simulation, the experimental study of AlGaN/GaN grooved gate MOSFET device is carried out. The abnormal phenomenon of negative threshold voltage of grooved gate MOSFET device is found in the experiment. The C-V characteristic of the device is measured and it is found that there is a large number of fixed positive charges at the interface between Al_2O_3 and GaN. Through first-principle calculation and analysis, it is found that the generation of fixed positive charge is due to a large number of Ga hanging bonds produced by gate groove etching, and the binding energy of Ga-O bond is less than that of Ga-N bond. The O atom in the gate dielectric Al_2O_3 can easily replace the N atom in GaN to form the Ga-O bond. The Ga-O bond and the hanging bond of Ga both exhibit positive electrical properties. The fixed positive charge attracts equal amount of electrons under the gate so that the threshold voltage of the grooved gate device is negative. In order to reduce the charge density of fixed positive charge at the interface between Al_2O_3 and GaN, the threshold voltage of the device can be controlled. In the optimization experiment, the post-annealing process of gate dielectric in N2 atmosphere was introduced. The N ion Al_2O_3/GaN interface heat treatment can effectively restore the Ga-N bond and reduce the positive charge density between Al_2O_3 and Ga N. The threshold voltage of 7.1V is controlled in a wide range. The decrease of the fixed positive charge density at the interface also weakens the channel scattering mechanism and increases the channel carrier mobility of the enhanced devices. Finally, the threshold voltage of 7.6V and the on-resistance of 19.5 惟 路mm, saturated drain current of 355mA-1 / mm are obtained. The Groove Gate enhanced MOSFET device with breakdown voltage of 1050V@Lgd=20 渭 m is reported to be the largest drain saturation current density enhanced AlGaN/GaN device in which the threshold voltage is larger than 5V.
【学位授予单位】:电子科技大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:TN386
【相似文献】
相关期刊论文 前10条
1 白超;;宽禁带Ⅱ-VI族材料生长及其对器件的影响[J];发光快报;1989年Z1期
2 ;苏州纳米所在增强型GaN HEMT器件研究方面取得进展[J];人工晶体学报;2017年02期
3 叶立剑;南京固体器件研究所1982年科研成果介绍[J];固体电子学研究与进展;1983年01期
4 张庆中;对《MOS管阈值电压的理论修正》一文的商榷[J];半导体技术;1984年01期
5 须轮;南京固体器件研究所召开1983年度学术年会[J];固体电子学研究与进展;1984年02期
6 陈裕权;;采用非极性面提高FET的阈值电压[J];半导体信息;2009年04期
7 董清云,杨之勇;MOS管阈值电压的理论修正[J];半导体技术;1983年03期
8 张永欢;姜岩峰;;近阈值电压电路研究进展[J];微电子学;2016年01期
9 戚辉;郭鹏;张雪华;丁星星;张莹;李梦;;水分子对有机场效应晶体管阈值电压稳定性的影响[J];中原工学院学报;2016年04期
10 杨慧;郭宇锋;洪洋;;纳米器件阈值电压提取方法[J];功能材料与器件学报;2014年01期
相关会议论文 前10条
1 龚旗煌;胡小永;李智;古英;张家森;杨宏;;介观光子学器件研究进展[A];2008介观光学及其应用研讨会论文集[C];2008年
2 曹镛;;聚合物发光材料与器件研究的进展[A];第九届全国发光学术会议摘要集[C];2001年
3 蒋亚东;吴志明;;有机功能材料及器件研究进展[A];第三届中国功能材料及其应用学术会议论文集[C];1998年
4 张洪涛;郭雪峰;;界面修饰功能化有机场效应晶体管[A];2011中国材料研讨会论文摘要集[C];2011年
5 熊俊峰;刘祥远;郭阳;;基于多阈值电压技术的功耗优化方法研究[A];第十六届计算机工程与工艺年会暨第二届微处理器技术论坛论文集[C];2012年
6 程珍娟;张波;郑儒富;王少军;;高性能欠压锁定电路的设计[A];四川省电子学会半导体与集成技术专委会2006年度学术年会论文集[C];2006年
7 郭云龙;狄重安;于贵;刘云圻;;薄膜微结构对有机光晶体管阈值电压的影响[A];全国第八届有机固体电子过程暨华人有机光电功能材料学术讨论会摘要集[C];2010年
8 黄新林;窦建华;;基于自适应体偏压技术的低功耗研究[A];全国第20届计算机技术与应用学术会议(CACIS·2009)暨全国第1届安全关键技术与应用学术会议论文集(下册)[C];2009年
9 童利民;;微纳光纤及其器件研究进展[A];2008介观光学及其应用研讨会论文集[C];2008年
10 刘益春;;基于金属氧化物-维纳米线的电光/光电转化器件研究[A];第八届中国功能材料及其应用学术会议摘要[C];2013年
相关重要报纸文章 前1条
1 材料学院;材料学院陈娜等在室温磁性半导体及器件研究中取得重要进展[N];新清华;2016年
相关博士学位论文 前6条
1 张晓波;染料掺杂的有机电致磷光/白光器件研究[D];上海大学;2007年
2 刘向;有机薄膜晶体管及微腔顶发射有机发光器件的研究[D];上海大学;2007年
3 委福祥;新型高性能有机电致发光器件的研究[D];上海大学;2007年
4 郭鹏;有机电双稳材料与器件的研究[D];复旦大学;2007年
5 何逸涛;高压高性能LIGBT器件新结构研究[D];电子科技大学;2017年
6 朱朝嵩;GaAs阈值电压均匀性与测试系统的研究[D];中国科学院研究生院(上海微系统与信息技术研究所);2002年
相关硕士学位论文 前10条
1 刘丽;GaN基凹槽栅MOSFET器件设计与制备技术研究[D];电子科技大学;2017年
2 孙旭;新型功率器件关键技术的研究[D];电子科技大学;2018年
3 唐琰;多栅无结器件新结构设计与仿真研究[D];哈尔滨工程大学;2016年
4 蒋知广;GaN功率器件击穿机理与耐压新结构研究[D];电子科技大学;2017年
5 单婵;无结FinFET器件三维仿真研究[D];哈尔滨工程大学;2014年
6 吕孟山;电导增强型横向功率MOS器件新结构与机理研究[D];电子科技大学;2017年
7 杨溢;增强型GaN Trench-Gate MIS-HFET阈值电压调控技术[D];电子科技大学;2018年
8 包慧萍;低压Trench MOSFET的辐射效应研究[D];电子科技大学;2018年
9 吴笛;高k+SiO_2栅全耗尽SOI MOSFET半解析模型的阈值电压和DIBL效应的研究[D];安徽大学;2018年
10 徐倩倩;高压SOI LDMOS器件的结构设计与仿真[D];杭州电子科技大学;2017年
,本文编号:2430193
本文链接:https://www.wllwen.com/kejilunwen/dianzigongchenglunwen/2430193.html