当前位置:主页 > 科技论文 > 电子信息论文 >

低相嗓光电振荡器关键技术研究

发布时间:2019-03-25 09:11
【摘要】:高性能的频率源在通讯、雷达、测量等领域有着重要的作用,是系统中射频信号的来源。传统的频率源存在着频率低、频谱纯度差等问题。光电振荡器(Optoelectronic Oscillator,OEO)作为一种新型的频率源,可以产生高频率且Q值极高、相位噪声极低的高性能射频信号,并且可以产生抖动低的光脉冲信号,近年来受到了各国学者的关注。本论文对低相噪光电振荡器的几个关键技术进行了理论分析和实验验证。本文首先介绍了光电振荡器的运转机理,讨论了低相噪光电振荡器的三个关键技术:单模运转、相位噪声抑制和频率稳定性提升,阐述了这三种关键技术的常规解决方案和各自的基本原理,分析了它们的优缺点。针对光电振荡器各项指标的提升,提出了两种方案,第一种方案是基于锁相环的双环光电振荡器,分析了双环的结构对边模的抑制作用,通过锁相环和温控模块提升了频率稳定性,理论推导了锁相环光电振荡器的噪声传递函数,并优化了光电振荡器的噪声。第二种是改进的注入锁定式光电振荡器,针对传统的注入锁定式光电振荡器存在的失锁问题,设计了额外的反馈环路,通过检测注入锁定式光电振荡器和注入源的相位关系来控制环路长度,提高了光电振荡器的长期稳定性。另外,推导了注入锁定式光电振荡器s域的噪声传递函数,并利用这一关系优化了注入锁定式光电振荡器的相位噪声。最后,基于锁相环和注入锁定技术,设计了光电振荡器的工程化样机。样机可以长时间稳定工作,输出10GHz的高品质信号,边模抑制比优于75dB,在10kHz频偏处相位噪声低于-140dBc/Hz,且30小时内频率漂移低于0.05ppm。
[Abstract]:High performance frequency source plays an important role in communication, radar, measurement and so on. It is the source of radio frequency signal in the system. The traditional frequency source has some problems such as low frequency and poor spectral purity. As a new type of frequency source, photoelectric oscillator (Optoelectronic Oscillator,OEO) can produce high performance RF signal with high frequency, extremely high Q value and very low phase noise, and can also produce low jitter optical pulse signal. In recent years, scholars from all over the world have paid close attention to it. In this paper, several key techniques of low phase noise photoelectric oscillator are theoretically analyzed and verified by experiments. This paper first introduces the operation mechanism of photoelectric oscillator, and discusses three key technologies of low phase noise photoelectric oscillator: single mode operation, phase noise suppression and frequency stability improvement. The general solutions and basic principles of these three key technologies are described, and their advantages and disadvantages are analyzed. In view of the improvement of each index of photoelectric oscillator, two schemes are proposed. The first scheme is a dual-loop photoelectric oscillator based on phase-locked loop, and the suppression effect of dual-loop structure on edge mode is analyzed. The frequency stability is improved by phase-locked loop and temperature control module. The noise transfer function of phase-locked loop photoelectric oscillator is deduced theoretically and the noise of photoelectric oscillator is optimized. The second one is an improved injection-locked photoelectric oscillator. An additional feedback loop is designed to solve the lock-out problem of the traditional injection-locked photoelectric oscillator. The loop length is controlled by detecting the phase relationship between the injection-locked photoelectric oscillator and the injection source, and the long-term stability of the photoelectric oscillator is improved. In addition, the noise transfer function in the s-domain of the injection-locked photoelectric oscillator is derived, and the phase noise of the injection-locked photoelectric oscillator is optimized by using this relation. Finally, based on phase-locked loop and injection locking technology, an engineering prototype of photoelectric oscillator is designed. The prototype can work stably for a long time and output the high quality signal of 10GHz. The edge mode rejection ratio is better than 75 dB, the phase noise at the 10kHz frequency offset is lower than-140 dB / H z, and the frequency drift is less than 0.05 ppm within 30 hours.
【学位授予单位】:浙江大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:TN752

【参考文献】

相关期刊论文 前5条

1 庞长林,王晓浩,周兆英,库国显,吕静姝;小型半导体制冷恒温控制系统的实验研究[J];仪表技术与传感器;2002年02期

2 胡辽林,刘增基;光纤通信的发展现状和若干关键技术[J];电子科技;2004年02期

3 池金刚;金韬;池灏;徐伟;赵欣慰;邓圆;;一种实用的光电振荡器相位噪声测量系统[J];光通信技术;2013年04期

4 徐伟;金韬;池灏;;耦合式光电振荡器的理论与实验研究[J];激光技术;2014年05期

5 任凤鑫;金韬;池灏;童国川;郑俊超;;基于反馈控制环路提高光电振荡器长期稳定性的方法[J];光子学报;2015年10期

相关硕士学位论文 前4条

1 任凤鑫;光电振荡器长期稳定性研究[D];浙江大学;2016年

2 徐伟;新型光电振荡器研究[D];浙江大学;2014年

3 池金刚;光电振荡器技术及其相位噪声测量研究[D];浙江大学;2013年

4 孙斌;基于光电振荡器的微波源研究[D];天津大学;2012年



本文编号:2446835

资料下载
论文发表

本文链接:https://www.wllwen.com/kejilunwen/dianzigongchenglunwen/2446835.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户1461b***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com