当前位置:主页 > 科技论文 > 电子信息论文 >

边缘化粒子概率假设密度滤波的多目标跟踪

发布时间:2019-08-26 10:19
【摘要】:针对复杂情况下的多目标跟踪问题,提出一种边缘化粒子概率假设密度滤波(MPF-PHD)方法。该方法首先将复杂情况下多个目标的状态向量分别提取出其中的非线性状态与线性状态。然后利用粒子概率假设密度滤波(PF-PHD)估计非线性状态,利用卡尔曼滤波(KF)估计线性状态,并把其中与非线性状态相关的线性状态估计用来优化非线性状态估计。通过对MPF-PHD方法与传统的PF-PHD方法仿真对比,验证了MPF-PHD方法有效解决了复杂情况下多目标跟踪的漏检问题,提高了多目标状态估计精度。
【图文】:

流程图,算法流程图,非线性状态


(总第42-)火力与指挥控制2017年第5期针对系统存在的非线性状态,运用PF-PHD方法估计状态。设截止到k-1时刻的非线性状态随机集为,k时刻非线性状态为xnk,则根据式(3)所表示的非线性状态模型,可以推得如下表示:(8)其中,Rn表示如下:(9)2.2MPF-PHD方法步骤依据边缘化粒子滤波的思想与多目标跟踪的PHD状态估计方法,结合复杂情况下多目标跟踪的模型描述。MPF-PHD方法分为4个步骤,流程图如图1所示:图1MPF-PHD算法流程图下面以伪代码形式给出MPF-PHD的算法实现流程:2.2.1初始化设N0为0时刻目标数,N赞0为0时刻的估计目标数,状态随机集Xn0初始粒子为,权值为:(10)同时,设完成对KF的初始化。2.2.2预测假设传感器检测概率pD,k与目标存活概率pS,k相互独立,k-1时刻的PHD为:(11)其中,为k-1时刻权值,代表状态值为时,跟踪区域中目标数目的期望。将k-1时刻目标状态粒子集划分为非线性部分与线性部分。则根据式(1),可以得到如下PHD预测公式:(12)对目标进行非线性状态粒子预测,根据式(8)可得:(13)其中,表示如下:(14)其线性状态粒子预测,由KF可得卡尔曼增益:(15)(16)其中,。(17)对粒子权值的预测,分别针对存活目标、衍生目标、新生目标有如下表示。对于存活目标有,(18)对于衍生目标,假设原有目标衍生数最多为1个,由其重要性密度函数获取采样粒子则有,,(19)对于新生目标,由非线性新生目标重要性密度函数获取采样粒子则有,(20)2.2.3更新在得到k时刻量测集之后,需要更新粒子权值并给出k时刻的PHD估计:(21)·16·0758

状态图,多目标,坐标位置,场景


髂勘昙觳飧怕匘D,k设为0.95,同时设目标存活概率pS,k为0.99。设传感器位于坐标原点且可获取目标距离和角度测量。本系统设定仿真场景中,目标1产生于1s,消亡于7s;目标2由目标1产生,产生于8s,消亡于25s;目标3产生于12s,消亡于37s;由目标2衍生出的目标4,产生于26s消亡于40s。观测范围内产生均匀分布的服从泊松过程模型的杂波信号。根据上述目标场景,以目标位置信息为非线性状态,以目标速度为线性状态。非线性状态采用PF-PHD状态估计滤波,线性状态采用线性条件下最优的状态估计,即KF。仿真结果如图2所示:(a)x轴坐标位置状态跟踪(b)y轴坐标位置状态跟踪图2场景中多目标坐标位置状态跟踪由图2可知,PF-PHD滤波方法估计出的位置状态对比真实轨迹,跟踪效果较好,但MPF-PHD方法对于位置状态的估计总体上明显好于PF-PHD滤波方法。由图2中位置坐标状态的显示中可以看出,PF-PHD滤波方法比较容易发生目标漏检的现象,特别是在衍生出来目标的轨迹中,目标漏检现象比较多;而MPF-PHD滤波方法则表现出更加稳定且精确的跟踪。由于采用PF-PHD滤波方法而出现的多目标状态漏检的现象,容易导致系统对当前时刻目标数目的判断。从采样时刻上的漏检率看,40个采样时刻中PF-PHD方法在15个采样点上出现了漏检,而MPF-PHD方法仅在1个采样点上出现了漏检。表1为多目标采样点漏检率统计表。从表1可以看出MPF-PHD状态滤波方法在多目标采样点上的漏检率明显低于PF-PHD状态滤波方法。表1多目标采样点漏检率统计表下页图3为场景中多目标数目估计的对比。由于PF-PHD状态滤波方法在多目标跟踪场景中发生的漏检现象,特别是在25s~30s之间场景内目标数目发生较大变化的阶段,导致图3中PF-PHD方法对于目标数目的估计存在较大误?
【作者单位】: 沈阳理工大学自动化与电气工程学院;
【基金】:国家自然科学基金(61373089) 辽宁省教育厅基金资助项目(LT2012005)
【分类号】:TN713

【相似文献】

相关期刊论文 前8条

1 田淑荣;王国宏;何友;;多目标跟踪的概率假设密度粒子滤波[J];海军航空工程学院学报;2007年04期

2 王延杰;主客观协调估计实现多目标跟踪[J];光机电信息;1997年12期

3 董康军;冯洋;;多目标跟踪的概率假设密度滤波[J];渭南师范学院学报;2008年02期

4 孙杰;李冬;;多目标跟踪的多伯努利平滑方法[J];数字通信;2014年02期

5 李卫华;红外多目标跟踪与预测技术的研究[J];红外;2002年06期

6 郝燕玲;孟凡彬;张崇猛;蔡艺峰;王素鑫;;多传感器多目标跟踪的粒子PHD滤波算法[J];传感器与微系统;2010年04期

7 E.W.卡门 ,C.R.萨斯特赖 ,王俊仪;使用位置量测值乘积的多目标跟踪(二)[J];情报指挥控制系统与仿真技术;1994年04期

8 ;[J];;年期

相关会议论文 前2条

1 敬忠良;王培德;周宏仁;;机动多目标跟踪统一方法[A];1991年控制理论及其应用年会论文集(下)[C];1991年

2 王芝;徐晓滨;文成林;;混合高斯PHD滤波器及其在多目标跟踪中的应用[A];2009中国控制与决策会议论文集(2)[C];2009年

相关博士学位论文 前1条

1 张鹤冰;概率假设密度滤波算法及其在多目标跟踪中的应用[D];哈尔滨工程大学;2012年

相关硕士学位论文 前3条

1 陈昊;基于概率假设密度的OTHR多目标跟踪算法研究[D];西北工业大学;2016年

2 司冠楠;面向多目标跟踪的多传感器数据融合方法研究[D];沈阳理工大学;2014年

3 肖本洁;机器人同时定位制图及多目标跟踪算法研究[D];复旦大学;2013年



本文编号:2529205

资料下载
论文发表

本文链接:https://www.wllwen.com/kejilunwen/dianzigongchenglunwen/2529205.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户e683a***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com