基于微结构光纤的微流体器件研究
发布时间:2020-05-08 22:43
【摘要】:石英光纤是信息社会的基础,被广泛应用于光纤通信与光纤传感领域。但是随着科学技术的进步,传统光纤已不能满足实际应用的需求,而且由于芯层材料的本征缺陷,石英光纤存在非线性、瑞利散射、色散、光致损伤、紫外和中红外波段不透光等诸多问题。为了适应科技的发展并且避开芯层材料的本征缺陷,研究人员开始探索不同于标准光纤的光纤结构,许多微结构光纤不断被提出并应用于激光、传感、生物和化学研究中。微流体是指在微米尺度内流动的气体或液体,微流体的体积一般在纳升至飞升量级。微流体具有很多不同于宏观流动的特点,比如低雷诺数、多场耦合、低维化、层流等。微结构光纤(微光纤、空芯微结构光纤)因其独特的性质在微流体研究方面具有独到的优势:一方面,微光纤的倏逝场可以与流体相互作用,通过激发光学信号达到流体检测的目的;另一方面,空芯微结构光纤的空气孔可以作为光和流体的共同通道,既避免了加工微通道所需的复杂工艺,又可以通过直接延长光纤长度的方法提高光和流体的作用强度。本文主要利用三种不同的微结构光纤(微光纤、空芯微光纤和大孔径负曲率空芯光纤)对微流体进行了光学检测。主要研究成果如下:1.实验上利用氢氧焰扫火法实现了空芯微光纤的拉制,在保证光纤直径在微米以下的同时保证了较低的传输损耗。在拉制标准通信光纤的装置基础上,通过适当提高氢氧焰的温度和两侧平移台的拉伸速度,可以在不通入惰性气体的条件下拉制空芯微光纤,并保证拉制过程中空气孔不塌缩。2.利用直径1 μm的微光纤实现了悬浮溶液中微粒的选择性可控操纵,980 nm的激光经过可调比例耦合器后成为两束相干光,两束光分别通入微光纤的两端,通过可调比例光纤耦合器调整两束光的相对大小,从而控制微光纤腰区位置的散射力合力的大小和方向,微光纤腰区附近的微粒被梯度力吸引到微光纤表面,同时在可调散射力的作用下进行可控的定向运动。3.利用实验室自制的空芯微光纤对有效探测体积约300 fL的溶液进行了荧光检测。内径数微米的空芯微光纤在可见光和近红外波段均可导光。外径5 μm的空芯微光纤在波长400 nm处的损耗为2.4 dB/mm。空芯微光纤的空气孔可以作为流体和光的共同通道,被束缚在空气中的光场直接与液体进行相互作用,在提高作用强度的同时大大降低了流体检测所需要的样晶体积。4.利用负曲率空芯光纤的大孔径中心孔实现了流体的快速注入和重金属离子检测。利用一种由一圈互不接触的玻璃管围绕空气芯构建的反谐振空芯光纤实现了对水体中Cu2+离子含量的定量检测。负曲率空芯光纤的大孔径空气孔作为流体和光的共同通道,大大提高了液体的注入速度和样品的重复利用率,而且光和样品的相互作用强度可以通过延长光纤长度直接加强。
【图文】:
图1-1不同光子晶体光纤截面的扫描电子显微镜照片[12]逡逑
图1-2微光纤结构示意图[35]逡逑
【学位授予单位】:南京大学
【学位级别】:博士
【学位授予年份】:2019
【分类号】:TN253
【图文】:
图1-1不同光子晶体光纤截面的扫描电子显微镜照片[12]逡逑
图1-2微光纤结构示意图[35]逡逑
【学位授予单位】:南京大学
【学位级别】:博士
【学位授予年份】:2019
【分类号】:TN253
【相似文献】
相关期刊论文 前10条
1 夏长明;周桂耀;;微结构光纤的研究进展及展望[J];激光与光电子学进展;2019年17期
2 高雪健;王善德;刘来;康U,
本文编号:2655157
本文链接:https://www.wllwen.com/kejilunwen/dianzigongchenglunwen/2655157.html