Si杂质扩散诱导InGaAs/AlGaAs量子阱混杂的研究(英文)
发布时间:2020-12-16 04:34
光学灾变损伤(COD)常发生于量子阱半导体激光器的前腔面处,极大地影响了激光器的出光功率及寿命。通过杂质诱导量子阱混杂技术使腔面区波长蓝移来制备非吸收窗口是抑制腔面COD的有效手段,也是一种高效率、低成本方法。本文选择了Si杂质作为量子阱混杂的诱导源,使用金属有机化学气相沉积设备生长了InGaAs/AlGaAs量子阱半导体激光器外延结构、Si杂质扩散层及Si3N4保护层。热退火处理后,Si杂质扩散诱导量子阱区和垒区材料互扩散,量子阱禁带变宽,输出波长发生蓝移。退火会影响外延片的表面形貌,而表面形貌则可能会影响后续封装工艺中电极的制备。结合光学显微镜及光致发光谱的测试结果,得到825℃/2 h退火条件下约93 nm的最大波长蓝移量,也证明退火对表面形貌的改变,不会影响波长蓝移效果及后续电极工艺。
【文章来源】:中国光学. 2020年01期 北大核心
【文章页数】:14 页
【部分图文】:
B组样品退火前后的表面形貌。
To deal with COD, it is necessary to understand the mechanism of COD at first. As shown in Fig. 2, the following two items result in COD: one is the large optical power density of the cavity surface and the other is the absorption of light by non-radiative recombination centers formed by surface state and interface state[10]. Both can increase the temperature at the cavity surface, and the temperature rise will narrow the band gap of the cavity surface and result in red shift of the wavelength, and the light absorption will be enhanced. Then the temperature will continue to rise, and the vicious cycle will eventually result in COD.图2 产生COD的机制
The schematic diagram of the epitaxial structure of InGaAs/AlGaAs used in this paper is shown in Fig. 3. The detailed information such as thickness and doping is listed in Table 1. This semiconductor laser diode epitaxial wafer was independently design-ed by our research group and grown using the MOCVD equipment of Aixtron AIX-200 system.表1 InGaAs/AlGaAs量子阱激光器的外延结构及相应参数Tab.1 Epitaxial structure and parameters of InGaAs/AlGaAs QW LD NO. Layer Material Composition Thickness Dopant 13 contract P-GaAs _ 150 nm C/P++ 12 grin p-AlxGaAs 0.37-0.1 67 nm C/P+ 11 cladding p-AlxGaAs 0.37 1100 nm C/P 10 grin p-AlxGaAs 0.255-0.37 120nm C/P 9 upper waveguide p-AlxGaAs 0.255 380 nm C/P 8 grin p-AlxGaAs 0.1-0.255 30 nm Un. 7 QW InxGaAs 0.267 7.4 nm Un. 6 grin n-AlxGaAs 0.255-0.1 30 nm Un. 5 lower waveguide n-AlxGaAs 0.255 800 nm Si/N 4 grin n-AlxGaAs 0.31-0.255 100 nm Si/N 3 cladding n-AlxGaAs 0.31 1460 nm Si/N 2 buffer n-GaAs _ 500 nm Si/N 1 substrate n-GaAs _ 450 μm
【参考文献】:
期刊论文
[1]基于GaAs膜的GaInP/AlGaInP无杂质空位扩散诱导量子阱混杂的研究(英文)[J]. 田伟男,熊聪,王鑫,刘素平,马骁宇. 发光学报. 2018(08)
[2]12 W高功率高可靠性915 nm半导体激光器设计与制作[J]. 仇伯仓,胡海,汪卫敏,刘文斌,白雪. 中国光学. 2018(04)
[3]基于SiO2薄膜的915nm半导体激光器的无杂质空位诱导量子阱混合研究[J]. 王鑫,赵懿昊,朱凌妮,侯继达,马骁宇,刘素平. 光子学报. 2018(03)
[4]Experimental investigation of loss and gain characteristics of an abnormal InxGa1-xAs/GaAs quantum well structure[J]. 贾燕,于庆南,李芳,王明清,卢苇,张建,张星,宁永强,吴坚. Chinese Optics Letters. 2018(01)
[5]InGaAs/AlGaAs量子阱红外探测器中势垒生长温度的研究[J]. 霍大云,石震武,张伟,唐沈立,彭长四. 物理学报. 2017(06)
[6]InGaAs/GaAs应变量子阱的发光特性研究[J]. 戴银,李林,苑汇帛,乔忠良,孔令沂,谷雷,刘洋,李特,曲轶,刘国军. 光学学报. 2014(11)
[7]High-strain InGaAs/GaAs quantum well grown by MOCVD[J]. 谷雷,李林,乔忠良,孔令沂,苑汇帛,刘洋,戴银,薄报学,刘国军. Chinese Optics Letters. 2014(10)
[8]基于循环退火技术的InGaAs/AlGaAs量子阱混杂[J]. 林盛杰,李建军,何林杰,邓军,韩军. 光电子.激光. 2014(08)
[9]GaAs中Si扩散机制的研究[J]. 方小华,鲍希茂. 半导体学报. 1996(12)
博士论文
[1]高功率半导体激光器抗COD关键技术研究[D]. 周路.长春理工大学 2014
硕士论文
[1]用量子阱混合技术提高大功率半导体激光器腔面的COD阈值[D]. 彭海涛.河北工业大学 2007
本文编号:2919538
【文章来源】:中国光学. 2020年01期 北大核心
【文章页数】:14 页
【部分图文】:
B组样品退火前后的表面形貌。
To deal with COD, it is necessary to understand the mechanism of COD at first. As shown in Fig. 2, the following two items result in COD: one is the large optical power density of the cavity surface and the other is the absorption of light by non-radiative recombination centers formed by surface state and interface state[10]. Both can increase the temperature at the cavity surface, and the temperature rise will narrow the band gap of the cavity surface and result in red shift of the wavelength, and the light absorption will be enhanced. Then the temperature will continue to rise, and the vicious cycle will eventually result in COD.图2 产生COD的机制
The schematic diagram of the epitaxial structure of InGaAs/AlGaAs used in this paper is shown in Fig. 3. The detailed information such as thickness and doping is listed in Table 1. This semiconductor laser diode epitaxial wafer was independently design-ed by our research group and grown using the MOCVD equipment of Aixtron AIX-200 system.表1 InGaAs/AlGaAs量子阱激光器的外延结构及相应参数Tab.1 Epitaxial structure and parameters of InGaAs/AlGaAs QW LD NO. Layer Material Composition Thickness Dopant 13 contract P-GaAs _ 150 nm C/P++ 12 grin p-AlxGaAs 0.37-0.1 67 nm C/P+ 11 cladding p-AlxGaAs 0.37 1100 nm C/P 10 grin p-AlxGaAs 0.255-0.37 120nm C/P 9 upper waveguide p-AlxGaAs 0.255 380 nm C/P 8 grin p-AlxGaAs 0.1-0.255 30 nm Un. 7 QW InxGaAs 0.267 7.4 nm Un. 6 grin n-AlxGaAs 0.255-0.1 30 nm Un. 5 lower waveguide n-AlxGaAs 0.255 800 nm Si/N 4 grin n-AlxGaAs 0.31-0.255 100 nm Si/N 3 cladding n-AlxGaAs 0.31 1460 nm Si/N 2 buffer n-GaAs _ 500 nm Si/N 1 substrate n-GaAs _ 450 μm
【参考文献】:
期刊论文
[1]基于GaAs膜的GaInP/AlGaInP无杂质空位扩散诱导量子阱混杂的研究(英文)[J]. 田伟男,熊聪,王鑫,刘素平,马骁宇. 发光学报. 2018(08)
[2]12 W高功率高可靠性915 nm半导体激光器设计与制作[J]. 仇伯仓,胡海,汪卫敏,刘文斌,白雪. 中国光学. 2018(04)
[3]基于SiO2薄膜的915nm半导体激光器的无杂质空位诱导量子阱混合研究[J]. 王鑫,赵懿昊,朱凌妮,侯继达,马骁宇,刘素平. 光子学报. 2018(03)
[4]Experimental investigation of loss and gain characteristics of an abnormal InxGa1-xAs/GaAs quantum well structure[J]. 贾燕,于庆南,李芳,王明清,卢苇,张建,张星,宁永强,吴坚. Chinese Optics Letters. 2018(01)
[5]InGaAs/AlGaAs量子阱红外探测器中势垒生长温度的研究[J]. 霍大云,石震武,张伟,唐沈立,彭长四. 物理学报. 2017(06)
[6]InGaAs/GaAs应变量子阱的发光特性研究[J]. 戴银,李林,苑汇帛,乔忠良,孔令沂,谷雷,刘洋,李特,曲轶,刘国军. 光学学报. 2014(11)
[7]High-strain InGaAs/GaAs quantum well grown by MOCVD[J]. 谷雷,李林,乔忠良,孔令沂,苑汇帛,刘洋,戴银,薄报学,刘国军. Chinese Optics Letters. 2014(10)
[8]基于循环退火技术的InGaAs/AlGaAs量子阱混杂[J]. 林盛杰,李建军,何林杰,邓军,韩军. 光电子.激光. 2014(08)
[9]GaAs中Si扩散机制的研究[J]. 方小华,鲍希茂. 半导体学报. 1996(12)
博士论文
[1]高功率半导体激光器抗COD关键技术研究[D]. 周路.长春理工大学 2014
硕士论文
[1]用量子阱混合技术提高大功率半导体激光器腔面的COD阈值[D]. 彭海涛.河北工业大学 2007
本文编号:2919538
本文链接:https://www.wllwen.com/kejilunwen/dianzigongchenglunwen/2919538.html