基于混合特征选择和超参优化的晶圆蚀刻缺陷预测方法
发布时间:2023-03-19 13:29
为了提高半导体晶圆制程中缺陷预测的准确率,提出一种混合特征选择和基于序列模型优化(SMBO)相结合的缺陷预测方法。该方法以对高维度、多噪声、多模态与线性不可分的数据具有良好适用性的随机森林和支持向量机两种机器学习算法为基础,首先利用基于随机森林算法的稳定性筛选为特征评分,再基于序列前向搜索方法搜索降序排序的特征,依次创建支持向量机分类模型,并采用SMBO方法进行优化,最终选择表现最好且特征数量最少的模型进行缺陷预测。为了验证所提方法的有效性和优异性,使用蚀刻制程中的残渣缺陷和凹坑缺陷的实际工程数据进行预测对比分析,最终验证了其对晶圆制造过程中的缺陷具有优异的识别能力。
【文章页数】:8 页
【文章目录】:
1 问题的描述
2 模型构建
2.1 混合特征选择方法
2.2 蚀刻缺陷预测系统
2.3 SMBO超参优化方法
3 实证研究
3.1 数据探索
3.2 模型结果
4 结束语
本文编号:3765331
【文章页数】:8 页
【文章目录】:
1 问题的描述
2 模型构建
2.1 混合特征选择方法
2.2 蚀刻缺陷预测系统
2.3 SMBO超参优化方法
3 实证研究
3.1 数据探索
3.2 模型结果
4 结束语
本文编号:3765331
本文链接:https://www.wllwen.com/kejilunwen/dianzigongchenglunwen/3765331.html