基于微流控技术的声表面波片上实验室的研究
发布时间:2024-03-10 18:29
微流控作为一种新兴技术,被广泛应用于化学和生物分析、医学研究、疾病早期诊断等领域。它能够处理微升/纳升乃至更小体积的液体生物样品和试剂,实现样品输运、泵送、混合、细胞处理,生物反应以及生物检测等,并且新的功能仍然在不断涌现。芯片实验室作为微流控技术的延伸,在一个小芯片上集成了生物传感和样品前处理等更多功能。对比传统的分析方法,微流控和芯片实验室具有更小的尺寸,因此允许使用少量试剂及分析少量样品,并实现了单一芯片上的多功能集成,从而避免潜在的交叉污染和人为的操作错误。微流控技术的其他优势还包括低成本,一次性使用,快速分析等,其可在几分钟内获得结果,而不是同传统分析方法的几小时或者几天。由于其独特的功能和巨大的应用潜力,各大公司,学校及政府都大量投入,进行深入广泛的研究探索。由于SAW可用于开发运输,泵送,混合,雾化,液滴生成,生物传感,颗粒(细胞)集聚,分拣和分离等,近些年,表面声波(Surface Acoustic Wave,SAW)被用于开发基于SAW单一原理的微流体及片上实验室,其结构和工艺简化,成本低,将在老龄化社会的健康呵护和医疗应用方面发挥重要作用。本人博士期间研究的目标是探...
【文章页数】:138 页
【学位级别】:博士
【文章目录】:
Abstract
摘要
List of Abbreviations
Acknowledgements
Chapter 1 Introduction
1.1 Literature review
1.2 Microfluidics
1.3 Microfluidics theory
1.4 Microfluidic channel designing and materials
1.5 Cryopreservation technology
1.6 Common methods for cryopreservation
1.7 Acoustic waves
1.8 Piezoelectric materials and piezoelectricity
Chapter 2 Surface Acoustic Wave
2.1 Introduction
2.2 Acoustic radiation force and acoustic streaming
2.2.1 Derivation of acoustic radiation pressure
2.2.2 Acoustic radiation force
2.3 SAW acoustic streaming
2.3.1 Numerical solution of acoustic streaming
Chapter 3 SAW Device Simulation, Designing and Experimental Testing
3.1 Introduction
3.2 Design of SAW device
3.3 Simulation of SAW device
3.4 Geometry settings
3.5 Subdomain settings
3.5.1 Boundary settings
3.6 Fabrication of SAW Device
3.6.1 Interdigital transducer (IDT) designing
3.6.2 IDT metal electrode preparation
3.6.3 PDMS bonding with SAW substrate
3.7 SAW characterization setup
Chapter 4 SAW based Tensiometry
4.1 Introduction
4.2 Operating principle
4.3 Fabrication and characterization
4.4 Simulation and experimental results
4.5 Results and discussions
4.6 Conclusions
Chapter 5 SAW based Cell Pumping and Counting
5.1 Introduction
5.2 SAW pumped lensless microfluidic imaging system
5.3 Theoretical analysis of SAW device
5.4 SAW device design for cell counting
5.5 Temporal-differencing based cell detection and counting
5.6 Cell counting
5.7 Experimental section: System setup
5.8 Experimental section: Sample preparation
5.9 SAW Device Characterization
5.10 Results of cells detection and counting
5.11 Conclusions
Chapter 6 SAW Lab-on-chip for Stem Cells Cryopreservation
6.1 Introduction
6.1 Working principle and operation details
6.2 Experimental section
6.2.1 Device design and fabrication
6.2.2 Cell culture
6.2.3 Cryopreservation solutions
6.2.4 CPA loading and unloading by conventional multistep method
6.2.5 SAW based multistep loading/unloading method
6.2.6 Ultra-rapid cooling of hUCM-MSCs by liquid nitrogen quenching
6.2.7 Statistical analysis
6.3 Results and discussion
6.3.1 Characteristics of SAW-enabled micromixer
6.3.2 Post-cryopreservation cell viability and proliferation
6.4 Acoustic streaming simulation
6.5 Simulation of CPA and water exchange across cell membrane
6.6 Conclusion
Chapter 7 Summary and Future Work
7.1 Summaries
7.2 Future work
References
List of Publications
本文编号:3925188
【文章页数】:138 页
【学位级别】:博士
【文章目录】:
Abstract
摘要
List of Abbreviations
Acknowledgements
Chapter 1 Introduction
1.1 Literature review
1.2 Microfluidics
1.3 Microfluidics theory
1.4 Microfluidic channel designing and materials
1.5 Cryopreservation technology
1.6 Common methods for cryopreservation
1.7 Acoustic waves
1.8 Piezoelectric materials and piezoelectricity
Chapter 2 Surface Acoustic Wave
2.1 Introduction
2.2 Acoustic radiation force and acoustic streaming
2.2.1 Derivation of acoustic radiation pressure
2.2.2 Acoustic radiation force
2.3 SAW acoustic streaming
2.3.1 Numerical solution of acoustic streaming
Chapter 3 SAW Device Simulation, Designing and Experimental Testing
3.1 Introduction
3.2 Design of SAW device
3.3 Simulation of SAW device
3.4 Geometry settings
3.5 Subdomain settings
3.5.1 Boundary settings
3.6 Fabrication of SAW Device
3.6.1 Interdigital transducer (IDT) designing
3.6.2 IDT metal electrode preparation
3.6.3 PDMS bonding with SAW substrate
3.7 SAW characterization setup
Chapter 4 SAW based Tensiometry
4.1 Introduction
4.2 Operating principle
4.3 Fabrication and characterization
4.4 Simulation and experimental results
4.5 Results and discussions
4.6 Conclusions
Chapter 5 SAW based Cell Pumping and Counting
5.1 Introduction
5.2 SAW pumped lensless microfluidic imaging system
5.3 Theoretical analysis of SAW device
5.4 SAW device design for cell counting
5.5 Temporal-differencing based cell detection and counting
5.6 Cell counting
5.7 Experimental section: System setup
5.8 Experimental section: Sample preparation
5.9 SAW Device Characterization
5.10 Results of cells detection and counting
5.11 Conclusions
Chapter 6 SAW Lab-on-chip for Stem Cells Cryopreservation
6.1 Introduction
6.1 Working principle and operation details
6.2 Experimental section
6.2.1 Device design and fabrication
6.2.2 Cell culture
6.2.3 Cryopreservation solutions
6.2.4 CPA loading and unloading by conventional multistep method
6.2.5 SAW based multistep loading/unloading method
6.2.6 Ultra-rapid cooling of hUCM-MSCs by liquid nitrogen quenching
6.2.7 Statistical analysis
6.3 Results and discussion
6.3.1 Characteristics of SAW-enabled micromixer
6.3.2 Post-cryopreservation cell viability and proliferation
6.4 Acoustic streaming simulation
6.5 Simulation of CPA and water exchange across cell membrane
6.6 Conclusion
Chapter 7 Summary and Future Work
7.1 Summaries
7.2 Future work
References
List of Publications
本文编号:3925188
本文链接:https://www.wllwen.com/kejilunwen/dianzigongchenglunwen/3925188.html