当前位置:主页 > 科技论文 > 地质论文 >

紫金山北上古生界多类型储层三维地质建模及合采兼容性数值试验

发布时间:2018-03-23 10:32

  本文选题:紫金山 切入点:上古生界 出处:《中国矿业大学》2017年硕士论文


【摘要】:多类型储层地质建模及合采兼容性数值试验,不仅能够直观准确的表达地质构造及储层参数空间信息,而且可为合采开发方案提供关键依据,从而确保多类型储层非常规天然气资源得到充分、合理的开发利用。本文在系统总结紫金山北上古生界多类型叠置非常规天然气储层和资源特征基础上,利用Petrel地质建模软件构建三维地质模型,采用Eclipse数值模拟软件开展多类型储层天然气合采兼容性数值试验,提出多储层合采初步选区、选层开发方案。结果显示,紫金山北区整体构造简单,广覆式生烃的煤系烃源岩与大面积分布的致密砂岩储集层、煤储层及泥页岩储层相互叠置,有利于煤层气、致密砂岩气和泥页岩气成藏;主力煤层厚度较大且分布稳定,含气量高,渗透性好,总体上处于略微欠压状态;致密砂岩储层广泛发育,空间连续性较好,含气饱和度较高,孔隙度较低,渗透率较高,储层压力系数变化不大,多数集中在0.6~1.1之间,以欠压为主,有常压储层发育;区内煤系泥页岩含气量极低,生产潜力小,煤层气与致密砂岩联合开发资源潜力较大。利用测井解释、地震解释及分层等数据,构建了多类型储层气藏三维精细地质模型,包括构造模型、岩相模型和相控属性模型,其准确性和精确度较高。首次构建了逐层叠加合采选区数值判别方法和评价界限,指出工区初步选区、选层开发方案:太原组砂岩整体单采、山西组煤层与石千峰组砂岩在工区西部均单采,其它采用合层开发。其中,适合合采层组合方式包括:上石盒子组砂岩-下石盒子组砂岩(A组合),位于工区整体区域;下石盒子组砂岩-山西组煤层(B组合),位于工区东南部分和西北部的大部分地区;石千峰组砂岩-上石盒子组砂岩-下石盒子组砂岩-山西组煤层(C组合),位于工区中东部区域。
[Abstract]:Multi-type reservoir geological modeling and compatibility numerical test not only can express geological structure and reservoir parameter spatial information intuitively and accurately, but also can provide the key basis for combined production development scheme. In order to ensure that the unconventional natural gas resources of multi-type reservoirs are fully and reasonably exploited and utilized, this paper systematically summarizes the multi-type superimposed unconventional natural gas reservoirs and resource characteristics of the Upper Paleozoic in the North Zijinshan area. Using Petrel geological modeling software to construct 3D geological model, using Eclipse numerical simulation software to carry out numerical test on compatibility of natural gas production of multiple types of reservoirs, and putting forward preliminary selection and development plan of multi-reservoir combined production. The results show that, The whole structure of Zijinshan North is simple, the coal-measure hydrocarbon source rock with wide overlying hydrocarbon generation type and the dense sandstone reservoir with large area distribution, coal reservoir and shale reservoir overlap each other, which is advantageous to the formation of coalbed methane, tight sandstone gas and shale gas reservoir. The main coal seams are of large thickness and stable distribution, high gas content, good permeability, and are in a slightly underpressure state on the whole; tight sandstone reservoirs are widely developed, with good spatial continuity, high gas saturation, low porosity and high permeability. The pressure coefficient of the reservoir has little change, most of them are between 0.6 and 1.1, mainly under pressure, with normal pressure reservoir developed, the gas content of coal shale in this area is very low, and the production potential is small. Based on the data of logging interpretation, seismic interpretation and stratification, 3D fine geological model of multi-type reservoir gas reservoir is constructed, including structural model, lithofacies model and facies control attribute model. The accuracy and accuracy of the method are high. For the first time, the numerical discrimination method and evaluation limit of superimposed combined mining area are constructed for the first time, and it is pointed out that the primary selection area and the development plan of the selected layer are as follows: the whole single production of the sandstone in Taiyuan formation. The coal seam of Shanxi formation and sandstone of Shiqianfeng formation are single mined in the western part of the work area, and the others are developed by combined strata. Among them, the suitable combination of combined strata includes: the sandstone of the upper Shihezi formation and the sandstone of the lower Shihezi formation, located in the whole area of the work area; The sandstone-Shanxi seam B assemblage of the Xiashihezi formation is located in the southeast part and the northwest part of the working area. Shiqianfeng sandstone-Shangshihezi sandstone-Xiashihezi sandstone-Shanxi coal seam C assemblage is located in the central and eastern part of the working area.
【学位授予单位】:中国矿业大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:P618.13

【参考文献】

相关期刊论文 前10条

1 秦勇;申建;沈玉林;;叠置含气系统共采兼容性——煤系“三气”及深部煤层气开采中的共性地质问题[J];煤炭学报;2016年01期

2 谢英刚;孟尚志;万欢;叶建平;潘新志;高丽军;;临兴地区煤系地层多类型天然气储层地质条件分析[J];煤炭科学技术;2015年09期

3 谢英刚;孟尚志;高丽军;孙新阳;段长江;王海平;;临兴地区深部煤层气及致密砂岩气资源潜力评价[J];煤炭科学技术;2015年02期

4 李奇;高树生;叶礼友;杨朝蓬;梁小娟;;致密砂岩气藏渗流机理及开发技术[J];科学技术与工程;2014年34期

5 秦勇;梁建设;申建;柳迎红;王存武;;沁水盆地南部致密砂岩和页岩的气测显示与气藏类型[J];煤炭学报;2014年08期

6 庞雄奇;姜振学;黄捍东;陈冬霞;姜福杰;;叠复连续油气藏成因机制、发育模式及分布预测[J];石油学报;2014年05期

7 杨兆彪;秦勇;;地应力条件下的多层叠置独立含气系统的调整研究[J];中国矿业大学学报;2015年01期

8 王庭斌;董立;张亚雄;;中国与煤成气相关的大型、特大型气田分布特征及启示[J];石油与天然气地质;2014年02期

9 杨华;刘新社;;鄂尔多斯盆地古生界煤成气勘探进展[J];石油勘探与开发;2014年02期

10 王佟;王庆伟;傅雪海;;煤系非常规天然气的系统研究及其意义[J];煤田地质与勘探;2014年01期

相关会议论文 前2条

1 张建民;;煤层气和相邻煤成气合采探索与研究[A];2008年煤层气学术研讨会论文集[C];2008年

2 傅雪海;秦勇;李贵中;;现代构造应力场中煤储层孔裂隙应力分析与渗透率研究[A];第四届全国青年地质工作者学术讨论会论文集[C];1999年

相关博士学位论文 前1条

1 袁学旭;多煤层含气系统识别研究[D];中国矿业大学;2014年

相关硕士学位论文 前9条

1 孙泽飞;临兴区块煤系非常规天然气共采可行性地质评价[D];中国矿业大学;2016年

2 杨光;临兴区块石炭二叠纪煤系流体压力系统及其沉积层序控制[D];中国矿业大学;2016年

3 郑书洁;临兴地区煤系生储盖组合及其层序地层格架控制[D];中国矿业大学;2016年

4 廖毅;致密砂岩气藏多层合采实验模拟及矿场应用[D];西南石油大学;2014年

5 方朝强;鄂尔多斯盆地东部上古生界页岩气成藏条件评价[D];西安石油大学;2012年

6 杨鹏;致密低压气藏单井合采接替物理模拟及地质影响因素分析[D];成都理工大学;2011年

7 于腾飞;煤系地层游离气成藏机制与模式研究[D];山东科技大学;2011年

8 刘静;山西临县紫金山碱性杂岩体的地球化学特征[D];太原理工大学;2010年

9 雷开强;鄂尔多斯盆地塔巴庙地区上古生界储层特征及分布规律研究[D];成都理工大学;2003年



本文编号:1653071

资料下载
论文发表

本文链接:https://www.wllwen.com/kejilunwen/diqiudizhi/1653071.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户6a9db***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com