当前位置:主页 > 科技论文 > 地质论文 >

伊通盆地深部结构地球物理特征提取与综合研究

发布时间:2018-05-03 05:03

  本文选题:伊通盆地 + 重、磁、电异常 ; 参考:《中国地质大学》2015年博士论文


【摘要】:伊通盆地的勘探实践证明,在盆地内具有丰富的石油、天然气资源,据中石油第三次资源评价,在该盆地石油资源可达7.3亿吨油气当量,是吉林油田重要的油气勘探及储量接替领域。近年来,油气勘探在伊通盆地取得了实质性的突破,齐家古潜山的C37井获得瞬间流量高达25600m3/h的气流,在西北缘C51井获得85000m3/d气流,所取得的勘探成果充分展示了伊通盆地具有良好的油气勘探前景。伊通盆地位于吉林省东部,属于郯庐断裂带北延部分,呈北东45°~55°方向,狭长带状分布,为第三系沉积断陷盆地。多年来,为了深化该盆地的地质认识,加快盆地油气勘探的步伐,人们一直致力于对断裂构造系统的研究,也取得了一定的研究成果,但远远满足不了油气勘探的需求,迫切需要采用新的思路及研究方法,搞清制约盆地油气勘探的断裂系统及其盆地的深部地质结构,以便深化盆地的地质认识及油气成藏规律,发现油气规模储量,尽快使伊通盆地成为后续增产上储的接替领域。目前,对盆地断裂构造的研究还仅限于地震资料,由于盆地内断裂构造复杂、地层挤压破碎严重导致地震难以成像,无法利用地震资料深化盆地断裂系统的研究。更难以应用地震资料研究伊通盆地深部的地质结构,尤其是盆地的基底内幕、潜山及古生界的分布进行认识。本论文的研究就是利用盆地所取得的重磁电、地震、钻井和地质等资料,以刘光鼎教授的“一、二、三、多”解释原则为指导,应用综合地球物理方法技术,进行伊通盆地深部结构研究。针对所研究的内容开展了多种综合地球物理新方法、新技术的探索,进行了深部结构地球物理特征提取,结合地质、地震和钻井资料,建立了盆地的断裂模式,深化了盆地断裂特征及基底内幕结构的认识,为深部油气勘探提供依据,并形成了一套应用综合地球物理研究盆地复杂断裂系统、深部地质结构的新思路及综合地球物理资料处理解释的流程,为开展同类研究工作提供了可借鉴的资料处理及解释的经验。在综合地球物理资料处理解释方面,本文应用多种现代的处理方法和技术,提出了利用三维密度畸变界面和三维重力视深度总梯度识别断裂信息方法。创造性的应用重力视深度滤波处理方法建立三维重力场,进行三维总梯度处理,有效地突出了断裂构造引起的重力梯度异常在三维空间的变化特征;将三维密度反演新理论应用于断裂系统的研究中,通过三维密度畸变面来研究断裂结构。在盆地火山岩分布的研究中,应用三维磁化率反演方法所获得的三维磁化率空间分布特征,结合钻遇火山岩井资料,成功地预测了火山岩的三维空间分布。利用三维密度与三维电阻率反演成果,结合砂砾岩与沉积岩之间的密度、电阻率差异,预测砂砾岩分布;通过研究基底岩性物性特征和地球物理响应特征,综合钻井资料和前人的地质研究成果,研究基底岩性分布;依据大地电磁测深电阻率垂向变化特征进行地质体属性识别,用钻井资料和高品质的地震资料对剖面作分层标定,并沿电性层横向起伏变化进行追索分层,结合研究区的实测物性资料,建立地质地球物理模型,进行重电约束反演,研究深部构造及基底内幕结构特征。本论文通过以上综合地球物理处理解释方法在伊通盆地的应用,获取了更多的深部地质结构的地球物理信息,对盆地的断裂特征、火山岩分布、砂砾岩分布、基底起伏特征、基底内幕结构有了更进一步的认识,取得了深化盆地研究的一系列成果。(1)深入研究重、磁、电处理方法,提出三维重力视深度总梯度和三维密度畸变界面识别断层信息方法,取得较好的地质效果。以往重磁常规处理着重于二维地球物理场的分离,研究地质体在平面上重磁响应,为了提取线性构造的三维重力场信息,提出三维重力视深度总梯度处理、三维密度反演识别断裂构造地球物理信息的方法,建立断层三维密度模型,进行三维密度反演和三维重力视深度总梯度试算,结果与模型吻合。通过对伊通盆地奢岭地区三维密度反演、三维重力视深度总梯度处理,获取三维密度和三维重力总梯度模异常,重力梯度极值连线和高强度密度畸变界面均清晰地反映了控盆边界断裂三维结构特征,并且梯度极值连线对次级断裂信息也有较好的显示。(2)针对研究的内容,建立伊通盆地综合地球物理方法应用体系,有效地提取了伊通深部结构地球物理特征信息,为开展同类盆地研究工作提供了可借鉴的资料处理及解释思路。1)采用变阶滑动趋势分析提取重力陡峭梯度带上的局部重力异常;2)三维重力视深度总梯度处理和三维密度反演识别断裂三维结构信息;3)重磁电二、三维反演,确定岩石密度、磁化率和电阻率二、三维空间结构变化特征;4)对大地电磁测深电阻率反演成果数据进行波场变换偏移成像、残差法和梯度法处理,提取盖层之间的电阻率差异信息;5)重电震约束反演,研究深部地质结构。(3)从重、磁、电地球物理场特征出发,进行目标场提取,研究了盆地深部结构特征,揭示了伊通盆地古生界构造格局,为下步古生界新层系油气勘探提供依据。1)断裂结构特征及与油气关系西北缘断裂较连续和平直,活动时间较长、规模较大,走向呈北东向,为高角度断裂,断面倾角沿走向变化较大,断层面局部呈舒缓波状S型产出,总体向盆地内倾,表现为正断层,在靠山屯附近倾向发生倒转而向盆地外倾;西北缘发育有平行于主断裂的次级断裂,多为逆冲断层,其断裂组合有两种形式:“犁式”与“y”冲断组合、反“y”冲断组合。新近纪因盆地反转挤压作用,在靠近盆地西北缘的地层发生强烈破碎变形,形成一条平行于盆地西北缘断裂展布的逆冲反转带,宽2-4km,基本贯通全盆地;逆冲挤压反转带下盘圈闭条件及封闭性良好,近岸水下扇体发育,物性较好、储层厚度较大,靠近生烃中心,具备良好的油气成藏条件,是目前油气勘探的重要有利区带。盆地东南缘边界断裂呈扭曲展布,倾向盆地内,为早期形成、断入岩石圈基底的深大断裂,对伊通盆地形成和演化起着协调拉分作用。断裂分段性明显,特别是在马鞍山镇与大孤山镇之间断裂走向、倾向变化较大。2号断裂主要经历了早期较强的张性活动和晚期挤压活动,调节岔路河断陷与鹿乡断陷的构造活动,具有对梁家构造带和五星构造带控制作用。2号断层上盘为梁家构造带,下盘为五星构造带,两盘存在巨大的垂向断距;2号断层早期表现为张性,对盆地的沉积控制具有重大作用;后期发生压扭作用,具有逆冲性质,为油气运移主要通道。2)砂砾岩的分布规律及其油气远景通过研究C49、C51井钻遇的砂砾岩物性特征,发现砂砾岩与周围的泥岩密度电阻率有较大的差异常,密度、电阻率分别大0.14g/cm3、15Ω.m以上。利用三维密度、电阻率反演,了解西北缘密度、电阻率在三维空间的变化,结合砂砾岩沉积环境,预测砂砾岩的分布,同时综合区内的构造特征,提出了万昌组砂砾岩2个油气勘探有利目标区。3)基底内幕结构及油气潜力盆地基底岩性以海西期、印支期、燕山期中酸性侵入岩体分布为主,前第三系次之。基底顶面岩性以花岗岩为主,前第三系基底沉积地层主要分布在西北缘与东南缘断裂带内侧,呈条带状分布。变质岩主要分布在马鞍山镇-大孤山镇之间,围绕火山口分布。伊通盆地深部存在古生界证据:在控盆断裂的外侧有石炭-二叠系分布,其岩性为泥岩、灰岩、板岩、砂岩;大地电磁电阻率断面深部一般均有低电阻率体存在;基底内地震有层状反射;伊通盆地C37井天然气成因为煤型气;C27井侧钻井在伊通盆地基岩段钻遇碳酸盐岩,有力地证明了伊通盆地深部存在石炭-二叠系地层。基底内幕为两层结构:上层为花岗岩,下层为石炭-二叠系地层。从整体来看,石炭-二叠系地层埋深均大于2000m,一般在3000-4500m之间。石炭-二叠系地层主要发育在盆地的西北缘和东南缘,中部马鞍山镇-鹿乡镇之间由于花岗岩大规模侵入,石炭-二叠系地层残留不多,东南缘石炭-二叠系地层比西北缘埋深浅。石炭-二叠系构造呈北东向条带状展布,石炭-二叠系在基底顶面构造带、断阶带、斜坡带之下均存在局部隆起。通过重、磁、电、震及钻井资料综合研究,认为基底内存在4座潜山:小孤山-尖山高潜山带、五星高潜山带、万昌-齐家低潜山带和搜登站高潜山带,总面积达到565km2,其中万昌-齐家低潜山带已获得工业气流。C27侧钻井碳酸盐岩Ro分布在0.7-1.6%之间,进入成熟-高成熟度阶段,是较好的烃源岩,因此伊通盆地具有古生界新层系油气勘探潜力。
[Abstract]:The exploration practice in the Yitong Basin has proved that there are abundant oil and natural gas resources in the basin. According to the evaluation of the third resources of PetroChina, the petroleum resources in the basin can reach 7.3 million tons of oil and gas equivalent. It is an important field of oil and gas exploration and replacement in Jilin oilfield. In recent years, the oil and gas exploration has made substantial breakthrough in the Yitong Basin, and all of them have made a substantial breakthrough. In the C37 well of ancient Qianshan, the instantaneous flow of flow of up to 25600m3/h was obtained, and the 85000m3/d airflow was obtained in the northwestern border C51 well. The exploration results fully demonstrated that the Yitong Basin had good oil and gas exploration prospects. The Yitong Basin is located in the east of Jilin Province, belongs to the north extension part of the Tanlu fault zone, and is in the direction of 45 to 55 degrees in the East, and the narrow and long strip distribution is in the East. For many years, in order to deepen the geological understanding of the basin and accelerate the pace of oil and gas exploration in the basin, people have been devoted to the study of the fault structure system and have made some research results, but it is far from the demand of oil and gas exploration, and it is urgent to adopt new ideas and methods to make clear the system of third series of sedimentary fault basins. The fracture system of basin oil and gas exploration and the deep geological structure of the basin in order to deepen the geological understanding of the basin and the law of oil and gas accumulation, and find the oil and gas reserves, as soon as possible to make the Yitong Basin a successor area for subsequent increase in production and storage. At present, the study of the fault structure of the basin is limited to seismic data, and the fault structure in the basin is due to the fault structure. It is difficult to make use of seismic data to deepen the study of the basin fracture system. It is more difficult to use seismic data to study the geological structure of the deep part of the Yitong Basin, especially the basement of the basin, the distribution of Qianshan and the Paleozoic in the basin. The data of heavy magnetoelectricity, earthquake, drilling and geology are obtained, guided by the principle of "one, two, three, and more" interpretation by Professor Liu Guangding to study the deep structure of the Yitong Basin with integrated geophysical techniques. Physical feature extraction, combined with geological, seismic and drilling data, established the fracture pattern of the basin, deepened the fault characteristics of the basin and the understanding of the basement curtain structure, provided the basis for the deep oil and gas exploration, and formed a set of new ideas and comprehensive earth objects for the comprehensive geophysical study of the complex fault system in the basin, the deep geological structure. The process of processing and interpreting the data processing provides a reference experience for information processing and interpretation of the same kind of research. In the synthesis of geophysical data processing and interpretation, this paper applies a variety of modern processing methods and techniques to identify the fracture information side by using the three-dimensional density distortion interface and the total gradient of the three-dimensional gravity depth. Method. A three dimensional gravity field is established by using the method of gravity depth filtering, and the three-dimensional total gradient is processed to effectively highlight the characteristics of the gravity gradient anomaly caused by the fracture structure in the three-dimensional space, and the three-dimensional density inversion theory is applied to the study of the fracture system, and the three-dimensional density distortion surface is used to study the fracture. In the study of the distribution of volcanic rocks in the basin, the three-dimensional spatial distribution of the magnetic susceptibility obtained by the three-dimensional magnetic susceptibility inversion method has been successfully applied to predict the three-dimensional spatial distribution of the volcanic rocks. The results of the three-dimensional density and three-dimensional resistivity inversion and the density between the gravel and the sedimentary rocks are used. The distribution of sand and conglomerate is predicted by the resistivity difference. By studying the characteristics of the basement lithology and geophysical response, comprehensive drilling data and previous geological research results, the distribution of the basement lithology is studied, and the geological body is identified by the vertical variation of the resistivity of magnetotelluric sounding, and the drilling data and high quality seismic information are used. The section is demarcated in the section, and it is delamination along the horizontal fluctuation of the electrical layer, and the geological geophysical model is established in combination with the measured physical data in the study area. The heavy electricity constraint inversion is carried out to study the deep structure and the structure characteristics of the basement curtain. To obtain more geophysical information of the deep geological structure, the fault features of the basin, the distribution of volcanic rocks, the distribution of the gravel, the characteristics of the basement undulation, the basement curtain structure have been further understood, and a series of achievements have been made to deepen the basin study. (1) deep into the study of gravity, magnetic and electrical treatment, and put forward the general gravity depth of the gravity. The gradient and three-dimensional density distortion interface recognizes the fault information method and obtains good geological effect. In the past, the conventional gravity and magnetic treatment focused on the separation of the two-dimensional geophysical field, studied the gravity and magnetic response of the geological body on the plane. In order to extract the three-dimensional gravity field information of the linear structure, the three-dimensional gravity depth total gradient treatment was put forward, and the three-dimensional density inverse density was reversed. A three-dimensional density model is established to identify the geophysical information of fracture structure, and the three-dimensional density inversion and the total gradient of 3D gravity depth are calculated. The results are in agreement with the model. Through the inversion of the three-dimensional density of the Yitong Basin and the total gradient of the 3D gravity depth, the three-dimensional density and the three dimensional gravity total gradient are obtained. The model anomaly, the gravity gradient extreme connection and the high intensity density distortion interface clearly reflect the three-dimensional structure characteristics of the control basin boundary fracture, and the gradient extreme connection has a good display on the secondary fracture information. (2) aiming at the content of the study, the comprehensive geophysical method application system of the Yitong basin is established, and the deep part of the Yitong is effectively extracted. Structural geophysical characteristics information provides reference data processing and interpretation ideas for carrying out the research work of similar basins.1) using variable order sliding trend analysis to extract local gravity anomalies on gravity steep gradient zone; 2) three-dimensional gravity depth total gradient processing and three-dimensional density inversion to identify fracture three-dimensional structure information; 3) gravity and magnetic field. Electrical two, three-dimensional inversion, determine the rock density, magnetic susceptibility and resistivity of two, three-dimensional spatial structure change characteristics; 4) the magnetotelluric resistivity inversion results of magnetotelluric data transformation migration imaging, residual and gradient method processing, extraction of resistivity difference information between the cover layer, 5) heavy electrical shock constraint inversion, the study of deep geological structure (3) starting from the characteristics of heavy, magnetic and electric geophysical fields, the target field extraction is carried out, the deep structural features of the basin are studied, the tectonic pattern of the Paleozoic in the Yitong Basin is revealed, the characteristics of the fracture structure for the new Paleozoic new strata in the lower Paleozoic oil and gas exploration are.1) and the fracture of the northwest margin of the oil and gas relations is continuous and straight, the activity time is longer and the scale is relatively large. It is a high angle fracture with a high angle fracture with a large change in the dip angle along the cross section, and the part of the fault plane appears to be soothing wave S, which is generally inclined to the basin, showing a positive fault and inclined to the basin in the vicinity of Tuen Tuen. The Northwest margin has a secondary fault parallel to the main fault, mostly the thrust fault and its fracture group. There are two forms: the "plow" and "Y" thrust combination, and the reverse "Y" thrust combination. In the Neogene basin, the basin is reversed and extruded in the basin northwest edge of the basin, forming a reverse thrust belt parallel to the northwest margin of the basin, wide 2-4km, basically through the whole basin, and under the reverse thrust inversion. The plate trap condition is well closed, the near shore subaqueous fan is developed, its physical property is good, the reservoir thickness is large, it is close to the hydrocarbon generating center and has good hydrocarbon accumulation conditions. It is an important favorable zone for oil and gas exploration at present. The fracture of the southeast margin of the basin is distorted and distributed in the basin, which is formed early and broken into the basement of the lithosphere basement. The formation and evolution of the Yitong Basin play a coordinating pull. The fracture segmentation is obvious, especially in the break direction between the Ma On Shan town and the grand Gushan Town, and the larger.2 fault has experienced the early strong tensionization and late extrusion activities, and the adjustment of the tectonic activity of the fork road fault and the Deer Township fault, which has a good effect on Liang Jiagou. The control action of the belt and the five star tectonic belt is the Liang Jia tectonic belt, which is the Liang Jia tectonic belt, the footwall is a five star tectonic belt, the two plate has a huge vertical break distance, and the early fault of No. 2 is tensional and has a great effect on the sedimentary control of the basin; in the later period, the thrust is characterized by the thrust property and the main channel.2 of oil and gas migration. Through the study of the properties of the C49 and C51 wells, it is found that the density resistivity of the sand conglomerate and the surrounding mudstone have a larger difference, the density and the resistivity are more than 0.14g/cm3,15 Omega.M, respectively. Conglomerate sedimentary environment, prediction of the distribution of sand conglomerate, and the tectonic characteristics in the complex area, the basement curtain structure of the 2 oil and gas exploration area.3 in Wanchang formation sand conglomerate and the basement lithology of the oil and gas potential basin are based on the Hercynian, Indosinian and Yanshan intermediate acid intrusive rocks and the first third lines. The first third series of basement sedimentary strata are mainly distributed in the northwestern margin and the southeastern margin of the fault zone. The metamorphic rocks are mainly distributed between the town of Ma An Shan and the town of Da Gushan and the distribution of the Palaeozoic in the deep part of the Yitong Basin. Rock, limestone, slate, sandstone, low resistivity body in the deep magnetotelluric resistivity section, and stratiform reflection in the basement in the base of the C37 well of Yitong Basin, and C27 well side drilling in the base rock section of the Yitong Basin, which strongly indicates that the Carboniferous Permian strata are found in the deep part of the Yitong Basin. The basement curtain is a two layer structure: the upper layer is granite and the lower layer is Carboniferous Permian. In the whole, the buried depth of the Carboniferous Permian strata is more than 2000m, usually between 3000-4500m. The Carboniferous Permian strata are mainly developed in the northwest and southeastern margin of the basin, and the massive intrusion of granite in the middle of the middle Ma On Shan town of Deer Township in the middle of the basin. There is not much residue in Carboniferous Permian strata, and Carboniferous Permian strata in the southeast margin are deeper than the northwest margin. The Carboniferous Permian structure is distributed in the north-east strip, and the Carboniferous Permian in the basement top surface structure belt, the fault step belt and the slope zone all have local uplift. Through the comprehensive study of heavy, magnetic, electrical, seismic and drilling data, the basement is considered to be in 4. Qianshan: the small Gushan - Jianshan high Qianshan belt, five star high submersible mountain belt, Wanchang - Qijia low Qianshan belt and sundeng station high Qianshan belt, the total area reaches 565km2, among which the Wanchang - Qijia low Qianshan belt has obtained industrial airflow.C27 side drilling carbonate Ro distribution between 0.7-1.6%, into the mature high maturity stage, is the better hydrocarbon source rock, therefore Iraq The Tong basin has hydrocarbon exploration potential in the new Paleozoic strata.

【学位授予单位】:中国地质大学
【学位级别】:博士
【学位授予年份】:2015
【分类号】:P618.13

【相似文献】

相关期刊论文 前10条

1 程新民;;吉林省伊通地区白土山组地层的重新厘定[J];吉林地质;1990年01期

2 解习农,刘耀宗,,张惠;伊通地堑层序构成及层序地层格架样式[J];现代地质;1994年03期

3 陈秉麟;依兰—伊通地区第三纪孢粉组合的地层学意义[J];大庆石油学院学报;1985年03期

4 孙晓猛;龙胜祥;张梅生;刘晓燕;郝福江;;佳木斯-伊通断裂带大型逆冲构造带的发现及形成时代[J];石油与天然气地质;2006年05期

5 侯治华;任俊杰;舒赛兵;;吉林省舒兰—伊通断裂的分段及其地震活动性研究[J];地球物理学进展;2009年04期

6 疏鹏;闵伟;刘玉刚;余中元;;依兰-伊通断裂方正段晚第四纪以来的构造活动及其地貌表现[J];震灾防御技术;2014年02期

7 黄光明;;伊通盆地白垩纪泉头期构造格架探讨[J];地质与资源;2009年01期

8 江涛;邱玉超;宋立斌;苗洪波;杨善民;张鲲鹏;;伊通盆地西北缘断裂带的性质[J];现代地质;2009年05期

9 刘殿军;魏得恩;王元生;王韧兰;安思谨;;依兰-伊通地堑南部岔路河组的建立[J];石油学报;1992年02期

10 童亨茂;伊通地堑边界断裂的性质与演化[J];地质力学学报;2002年01期

相关会议论文 前1条

1 魏兆言;刘光玉;李振连;刘佳;李东明;刘大玉;;伊通地堑下第三系敏感性油气藏压裂技术研究[A];增强自主创新能力 促进吉林经济发展——启明杯·吉林省第四届科学技术学术年会论文集(上册)[C];2006年

相关重要报纸文章 前10条

1 本报记者 王东;四轮驱动 两冀齐飞[N];四平日报;2005年

2 通讯员 李景德 杨贵东;伊通多措并举助推民营经济腾飞[N];四平日报;2007年

3 通讯员 李景德;伊通新闻宣传工作重实效[N];四平日报;2007年

4 刘朝晖邋任立勇;“五挂马车”拉动伊通经济[N];吉林日报;2007年

5 通讯员 冬原;市关工委领导深入伊通调研新农村建设情况[N];四平日报;2009年

6 通讯员 杨贵东;市关工委主任孙述昌一行到伊通调研[N];四平日报;2010年

7 通讯员 刘朝晖 杨贵东;伊通参与上海世博会吉林活动周取得良好效果[N];四平日报;2010年

8 通讯员 祁志标 韩茹 本报记者 程超;伊通研发完成中国本土化[N];中国房地产报;2004年

9 本报通讯员 刘朝晖 杨贵东;满乡风韵 魅力伊通[N];四平日报;2010年

10 记者 宋亚光 通讯员 杨贵东 史洪亮;伊通打击侵财犯罪出新招[N];四平日报;2011年

相关博士学位论文 前4条

1 周锡明;伊通盆地深部结构地球物理特征提取与综合研究[D];中国地质大学;2015年

2 唐大卿;伊通盆地构造特征与构造演化[D];中国地质大学;2009年

3 李恩泽;伊通—舒兰断裂带(长春段)地震活动性及对长春城市发展的影响[D];吉林大学;2012年

4 曹强;伊通盆地成藏动力学研究[D];中国地质大学;2010年

相关硕士学位论文 前10条

1 郭婧;伊通盆地烃源岩评价[D];东北石油大学;2015年

2 李默然;伊通盆地西北缘鹿乡—岔路河断陷成藏条件研究[D];东北石油大学;2015年

3 于光源;依兰—伊通断裂(吉林省段)活动性研究[D];吉林大学;2013年

4 李友庆;伊通板配筋应用管理软件的研究与程序开发[D];同济大学;2007年

5 邱玉超;伊通盆地基岩油气藏形成机制及分布规律[D];东北石油大学;2012年

6 刘和芝;伊通断陷盆地重点目标刻画与评价[D];东北石油大学;2013年

7 疏鹏;依兰—伊通断裂方正段晚第四纪活动特征研究[D];中国地震局地质研究所;2014年

8 马琳;伊通盆地鹿乡断陷双阳组油气成藏机制[D];吉林大学;2012年

9 孙凯;伊通盆地地层划分及对比[D];东北石油大学;2013年

10 顾乐乐;伊通墙板节点强度、重复荷载作用及墙体模拟地震振动台试验研究[D];同济大学;2007年



本文编号:1837072

资料下载
论文发表

本文链接:https://www.wllwen.com/kejilunwen/diqiudizhi/1837072.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户e1fa7***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com