当前位置:主页 > 科技论文 > 地质论文 >

考虑岩体裂隙粗糙度的动水注浆模拟试验

发布时间:2018-05-13 10:27

  本文选题:交互作用 + 动水 ; 参考:《中国矿业大学》2017年硕士论文


【摘要】:裂隙岩体突涌水问题严重影响着地下工程的安全,注浆治理技术已成为突水灾害防治和预防的关键手段之一。加强对裂隙动水条件下的注浆封堵效果相关理论和技术研究是非常有必要的。本文考虑了因素之间交互作用进行了裂隙动水注浆模拟实验研究,分析了各因素及其交互作用对注浆堵水效果的影响。建立粗糙度裂隙动水注浆试验平台,进行了不同粗糙度裂隙注浆模拟平行试验和单裂隙动水注浆影响因素试验,研究了裂隙粗糙度对注浆堵水、浆液扩散、留存封堵、裂隙渗流压力的影响及原因。主要研究内容及成果如下:(1)进行了动水流速、裂隙开度、注浆流量和浆液胶凝时间及其交互作用的平直光滑裂隙注浆堵水试验。影响注浆堵水率大小的顺序依次为裂隙开度D、动水流速A×裂隙开度D、注浆流量B×胶凝时间C。动水流速与裂隙开度之间、注浆流量与胶凝时间之间存在交互作用,其对注浆堵水率有显著影响。确定的因素水平的最优组合为:动水流速A为2cm/s,注浆流量B为200 ml/min,胶凝时间C为99.8s和裂隙开度D为2mm。(2)组装了模拟粗糙裂隙动水注浆试验系统平台,根据Barton标准粗糙度等级剖面曲线,进行了10组不同粗糙度裂隙注浆模拟平行试验。浆液在粗糙裂隙中的扩散形态分为两种类型:近圆形扩散整体推移型和近矩形扩散跨越驱替型。当裂隙粗糙度系数JRC≤8时,浆液扩散形态为近圆形扩散整体推移型,浆液的前期扩散过程与相同条件下平直光滑裂隙的扩散过程基本类似。当裂隙粗糙度系数JRC8时,浆液扩散形态近矩形扩散跨越驱替型。裂隙粗糙度对浆液的扩散距离与扩散面积有着很大影响,裂隙粗糙度系数越小,越有利于浆液的扩散,粗糙度系数越大,浆液扩散越困难。(3)对不同粗糙度裂隙注浆平行试验的水流量变化曲线规律进行分析。水流量变化曲线分为三类:单平台递减型、多峰值波动型与双平台型。从堵水率可以看出,当裂隙粗糙度系数JRC≤10时,其注浆堵水效果均不好,基本处于“失败”与“非常差”等级。而当JRC10时,堵水率要优于JRC≤10的情况。(4)不同粗糙度裂隙注浆平行试验的渗流压力场分为:“单峰型”、“多峰型”、“平台型”和“波动型”四种类型。裂隙粗糙度系数JRC≤8时,其渗流压力场容易出现“单峰型”和“波动型”渗流压力场。当裂隙粗糙度系数JRC8时,其渗流压力场基本上为“多峰型”和““平台型””渗流压力场。(5)单裂隙动水注浆效果及影响因素试验中,影响注浆堵水效果的因素由大到小依次为浆液胶凝时间、裂隙粗糙度系数、动水流速。(6)在单裂隙动水注浆正交试验中,裂隙的粗糙度系数决定了浆液的扩散的整体类型,而动水流速和浆液的胶凝时间在裂隙粗糙度系数较小时,对浆液扩散形态影响不大,而粗糙度系数较大时,动水流速越大,浆液的胶凝时间越长,浆液破碎越严重,封堵效果越差,当动水流速最小时,浆液会向逆水流方向跨越扩散而不是顺水流方向。裂隙粗糙度系数对注浆过程中,水流量变化的影响较大,而动水流速与浆液胶凝时间的改变对注浆过程中水流量的改变影响较小。
[Abstract]:The problem of water inrush from fractured rock mass seriously affects the safety of underground engineering, and grouting treatment technology has become one of the key means to prevent and prevent water inrush. It is necessary to strengthen the research on the theory and technology of grouting sealing effect under the condition of dynamic water. The influence of various factors and their interaction on the water plugging effect is analyzed. The experimental platform of roughness fractured water grouting is set up, and the experiment of the parallel experiment of grouting simulation with different roughness and the influence factors of the single crack moving water grouting are carried out. The water plugging, the diffusion of slurry and the retention of the slurry are studied. The main research contents and results are as follows: (1) the water flow velocity, crack opening, grouting flow and slurry gelation time and the interaction of the smooth crevice grouting test are carried out. The order of the size of the grouting water plugging rate is the fracture opening D, the moving water velocity A x fracture opening D, There is an interaction between the slurry flow rate and the crack opening time between the slurry flow B and the cementitious time C. and the cementitious time, which has a significant influence on the water plugging rate. The optimal combination of the determined factor level is that the flow velocity A is 2cm/s, the grouting flow B is 200 ml/min, the cementitious time C is 99.8s and the crack opening D is 2mm. (2). According to the Barton standard roughness grade profile, 10 groups of different roughness fracture grouting simulation parallel experiments are carried out on the platform of rough fissure water grouting test system. The diffusion morphology of the slurry in the rough fissure is divided into two types: the near circular diffusion whole load type and the near moment diffusion spanning displacement type. When the crack roughness coefficient is J When RC is less than 8, the diffusion morphology of the slurry is near circular diffusion, and the initial diffusion process of the slurry is similar to that of the smooth and smooth fracture under the same condition. When the crack roughness coefficient is JRC8, the diffusion morphology of the slurry is near the displacement type. The crack roughness has a very good effect on the diffusion distance and the diffusion area of the slurry. The smaller the coefficient of fissure roughness is, the more conducive to the diffusion of the slurry, the more the roughness coefficient is, the more difficult the slurry diffusion is. (3) the water flow variation curve of different roughness grouting parallel tests is analyzed. The water flow variation curve is divided into three types: single platform decreasing type, multi peak wave type and double platform type. It can be seen that when the crack roughness coefficient JRC is less than 10, the water plugging effect of the grouting is not good, and it is basically in the "failure" and "very poor" grade. When JRC10, the water plugging rate is better than that of JRC < 10. (4) the seepage pressure field of the parallel test of different roughness fracture grouting is divided into "single peak type", "multi peak type", "platform type" and "platform type". "Wave type" four types. When the crack roughness coefficient JRC is less than 8, the seepage pressure field is prone to "single peak" and "wave type" seepage pressure field. When the crack roughness coefficient is JRC8, the seepage pressure field is basically "multi peak type" and "platform type" seepage pressure field. (5) the effect of water grouting in single fracture and the influence cause of the seepage pressure field. In the element test, the factors affecting the water plugging effect from large to small are serous cementitious time, fissure roughness coefficient, and moving water velocity. (6) in the orthogonal test of single fractured water grouting, the roughness coefficient of the crack determines the whole type of the diffusion of the slurry, while the dynamic flow velocity and the gelation time of the slurry are smaller in the fissure roughness coefficient. When the moving water velocity is larger, the longer the flow velocity is, the longer the sizing time of the slurry, the more serious the sizing is, the worse the plugging effect is. When the flow velocity is the hourly speed, the slurry will spread to the reverse flow direction and not the flow direction. The water flow change during the grouting process is changed by the crack roughness coefficient. The influence of dynamic water velocity and slurry gelation time has little effect on the change of water flow in grouting process.

【学位授予单位】:中国矿业大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:TU45

【参考文献】

相关期刊论文 前10条

1 陈世江;朱万成;王创业;张飞;;岩体结构面粗糙度系数定量表征研究进展[J];力学学报;2017年02期

2 李化;黄润秋;;岩石结构面粗糙度系数JRC定量确定方法研究[J];岩石力学与工程学报;2014年S2期

3 俞文生;李鹏;张霄;王倩;;可变倾角单裂隙动水注浆模型试验研究[J];岩土力学;2014年08期

4 刘健;刘人太;张霄;李术才;;水泥浆液裂隙注浆扩散规律模型试验与数值模拟[J];岩石力学与工程学报;2012年12期

5 湛铠瑜;隋旺华;王文学;;裂隙动水注浆渗流压力与注浆堵水效果的相关分析[J];岩土力学;2012年09期

6 钱自卫;姜振泉;曹丽文;;渗透注浆浆液扩散半径计算方法研究及应用[J];工业建筑;2012年07期

7 李术才;张霄;张庆松;孙克国;徐尧;张伟杰;李海燕;刘人太;李鹏;;地下工程涌突水注浆止水浆液扩散机制和封堵方法研究[J];岩石力学与工程学报;2011年12期

8 邵红旗;王维;;双液注浆法快速建造阻水墙封堵突水巷道[J];煤矿安全;2011年11期

9 张霄;李术才;张庆松;孙克国;刘人太;韩伟伟;原小帅;;关键孔注浆方法在高压裂隙水封堵中的应用研究[J];岩石力学与工程学报;2011年07期

10 湛铠瑜;隋旺华;高岳;;单一裂隙动水注浆扩散模型[J];岩土力学;2011年06期

相关会议论文 前1条

1 王岐;;用伸长率R确定岩石节理粗糙度系数的研究[A];地下工程经验交流会论文选集[C];1982年

相关博士学位论文 前4条

1 钱自卫;孔隙砂岩化学注浆浆液渗透扩散机理[D];中国矿业大学;2014年

2 胡巍;岩体裂隙与管道动水注浆浆液扩散封堵机理研究[D];中国矿业大学;2013年

3 刘人太;水泥基速凝浆液地下工程动水注浆扩散封堵机理及应用研究[D];山东大学;2012年

4 王档良;多孔介质动水化学注浆机理研究[D];中国矿业大学;2011年



本文编号:1882768

资料下载
论文发表

本文链接:https://www.wllwen.com/kejilunwen/diqiudizhi/1882768.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户6ea95***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com