当前位置:主页 > 科技论文 > 地质论文 >

Bayesian框架下的地震盲反褶积算法研究

发布时间:2018-05-27 16:15

  本文选题:地震盲反褶积 + 反射系数 ; 参考:《天津大学》2015年博士论文


【摘要】:地震盲反褶积是指在地震子波和反射系数均未知的情况下,仅利用地震记录实现地震子波和反射系数的有效估计,其目的是从地震记录中分离地震子波,提取高精度的反射系数,改善地震反射系数资料的分辨率,拓宽其有效频谱,保留高频分量,从而能更精确地表征地层结构。地震盲反褶积算法广泛应用于地震信号分析、地质考察、资源探测、石油勘探、海洋地震勘探等领域。本文主要研究基于Bayesian框架下的地震盲反褶积问题,通过建立地震子波、地震记录以及反射系数的相关先验模型,利用参数估计的方法获得反射系数。所做的主要工作如下:(1)研究了变分Bayesian地震盲反褶积算法和稀疏表示的变分Bayesian地震盲反褶积算法,分别建立了地震子波、反射系数和地震记录的分层Bayesian先验模型,推导了算法迭代公式,进行了计算机仿真,结果表明新算法有效分离了地震子波,获得了较高精度的反射系数,改善了均方误差等量化指标。(2)研究了基于部分折叠Gibbs抽样的Bayesian多通道地震盲反褶积算法,讨论了多通道反射系数的马尔可夫贝努利高斯模型,通过部分折叠Gibbs抽样得到反射系数最大后验分布的近似解,进而实现反射系数的估计;同时分析了改进的马尔可夫贝努利高斯模型,研究了局部边缘化Gibbs抽样的Bayesian多通道地震盲反褶积算法。实验结果表明新算法拓宽了地震反射系数资料的有效频谱,提高了地震反射系数的分辨率,改善了损失函数等量化评价指标。(3)研究了基于线性小波和Curvelet变换的两种Bayesian压缩感知地震盲反褶积算法,分析了Bayesian压缩感知框架下反射系数、地震子波以及超参数的先验分布,推导了算法迭代公式,利用期望最大化策略进行参数估计。实验仿真分析表明,新算法改善了反褶积效果,降低了归一化均方误差,提高了地震反射系数的估计精度。
[Abstract]:Seismic blind deconvolution refers to the effective estimation of seismic wavelet and reflection coefficient only by using seismic records when the seismic wavelet and reflection coefficient are unknown. The purpose of the deconvolution is to separate seismic wavelet from seismic record. The high precision reflection coefficient is extracted, the resolution of seismic reflection coefficient data is improved, the effective frequency spectrum is widened, and the high frequency component is retained, thus the stratigraphic structure can be represented more accurately. Seismic blind deconvolution algorithm is widely used in seismic signal analysis, geological survey, resource exploration, petroleum exploration, marine seismic exploration and other fields. In this paper, the seismic blind deconvolution problem based on Bayesian framework is studied. The reflection coefficient is obtained by establishing a prior model of seismic wavelet, seismic record and reflection coefficient. The main work is as follows: (1) the variational Bayesian seismic blind deconvolution algorithm and the sparse representation variational Bayesian seismic blind deconvolution algorithm are studied. The hierarchical Bayesian prior models of seismic wavelet, reflection coefficient and seismic records are established, respectively. The iterative formula of the algorithm is derived and the computer simulation is carried out. The results show that the new algorithm can effectively separate seismic wavelet and obtain a high precision reflection coefficient. The blind Bayesian seismic deconvolution algorithm based on partially folded Gibbs sampling is studied, and the Markov Bernoulli Gao Si model with multi-channel reflection coefficient is discussed. The approximate solution of the maximum posterior distribution of the reflection coefficient is obtained by partially folded Gibbs sampling, and the estimation of the reflection coefficient is realized, and the improved Markov Bernoulli Gao Si model is also analyzed. A blind Bayesian seismic deconvolution algorithm based on locally marginalized Gibbs sampling is studied. The experimental results show that the new algorithm broadens the effective spectrum of seismic reflection coefficient data and improves the resolution of seismic reflection coefficient. Based on linear wavelet transform and Curvelet transform, two blind deconvolution algorithms for Bayesian compression sensing seismic are studied. The prior distributions of reflection coefficient, seismic wavelet and superparameter are analyzed under the frame of Bayesian compression perception. The iterative formula of the algorithm is derived, and the parameter estimation is carried out by using the expectation maximization strategy. The experimental results show that the new algorithm improves the deconvolution effect, reduces the normalized mean square error, and improves the estimation accuracy of seismic reflection coefficient.
【学位授予单位】:天津大学
【学位级别】:博士
【学位授予年份】:2015
【分类号】:P631.4

【相似文献】

相关期刊论文 前10条

1 ;Bayesian and Geostatistical Approaches to Combining Categorical Data Derived from Visual and Digital Processing of Remotely Sensed Images[J];Geo-Spatial Information Science;2005年02期

2 ;Application of Bayesian Network Learning Methods to Land Resource Evaluation[J];Wuhan University Journal of Natural Sciences;2006年04期

3 ;Exact Bayesian and Fiducial Limits for the Mean of Lognormal Distribution[J];Chinese Journal of Systems Engineering and Electronics;1994年02期

4 张剑;叶见曙;赵新铭;;Dynamic Bayesian estimation of displacement parameters of continuous curve box based on Novozhilov theory[J];Applied Mathematics and Mechanics(English Edition);2007年01期

5 ;Research on Bayesian Network Based User's Interest Model[J];Wuhan University Journal of Natural Sciences;2007年05期

6 ;Stochastic back analysis of permeability coefficient using generalized Bayesian method[J];Water Science and Engineering;2008年03期

7 朱永生;;Bayesian credible interval construction for Poisson statistics[J];中国物理C;2008年05期

8 ;Research of Gene Regulatory Network with Multi-Time Delay Based on Bayesian Network[J];Journal of Northeast Agricultural University(English Edition);2008年02期

9 ;Study of testability measurement method for equipment based on Bayesian network model[J];Journal of Systems Engineering and Electronics;2009年05期

10 董旭初 ,欧阳丹彤 ,刘大有;Bayesian网推理中的化简方法[J];吉林大学学报(理学版);2004年01期

相关会议论文 前10条

1 ;Optimal Coordination of Multi-task Allocation and Path Planning for UAVs Using Dynamic Bayesian Network[A];2009中国控制与决策会议论文集(3)[C];2009年

2 ;Bayesian Network analysis on agency behavior of controlling shareholders[A];2009中国控制与决策会议论文集(1)[C];2009年

3 ;Expected Bayesian Credible Limit of Reliability Parameters in the Case of Zero-Failure Data for Exponential Distribution[A];Proceedings of the 2011 Chinese Control and Decision Conference(CCDC)[C];2011年

4 ;Research on Applying Bayesian Networks to Condition-Based Maintenance of Hydroelectric Set[A];第二十三届中国控制会议论文集(下册)[C];2004年

5 ;A Recursive Method of Learning Bayesian Network for Rule Extraction Based on Information Theory[A];第一届建立和谐人机环境联合学术会议(HHME2005)论文集[C];2005年

6 ;Application of Data Mining Model Based on Bayesian Artificial Neural Network in Fault Diagnosis for Hydraulic Generators[A];第二十四届中国控制会议论文集(下册)[C];2005年

7 ;A Reliability Improvement Predictive Approach to Software Testing with Bayesian Method[A];第二十九届中国控制会议论文集[C];2010年

8 ZHU Zoe;;Threat Assessment Based on Variable Parameter Dynamic Bayesian Network[A];第二十九届中国控制会议论文集[C];2010年

9 ;Bayesian methods for cycle slips detection based on autoregressive model[A];第三届中国卫星导航学术年会电子文集——S03精密定轨与精密定位[C];2012年

10 ;Fault Prognosis for Data Incomplete Systems: A Dynamic Bayesian Network Approach[A];第24届中国控制与决策会议论文集[C];2012年

相关博士学位论文 前5条

1 李艳琴;Bayesian框架下的地震盲反褶积算法研究[D];天津大学;2015年

2 彭青松;Bayesian网及其在图像分析中的应用研究[D];合肥工业大学;2005年

3 董旭初;Bayesian网的最优树分解研究[D];吉林大学;2011年

4 张召友;非线性Bayesian滤波及其在SINS/GPS紧耦合导航中的应用研究[D];哈尔滨工程大学;2013年

5 Muzahem Mohammed Yahya Al-Hashimi;[D];华中科技大学;2013年

相关硕士学位论文 前10条

1 董海彪;基于克里格替代模型和改进的Bayesian-MCMC方法的地下水污染源反演识别研究[D];吉林大学;2016年

2 滕德雄;基于Bayesian的空间多层线性回归模型的参数估计及其应用[D];新疆大学;2016年

3 于鹏;一种Bayesian网结构学习算法的研究[D];吉林大学;2005年

4 毛小云;基于Bayesian网络的对等环境负载均衡模型[D];浙江大学;2008年

5 王昆;一种基于Bayesian CBR的推荐系统研究[D];河北师范大学;2011年

6 董旭初;Bayesian网推理算法及基于Bayesian网的农业专家系统开发工具组件[D];吉林大学;2004年

7 王鹏;Bayesian网推理算法及在图像分类上的应用[D];吉林大学;2006年

8 吕利;应用Bayesian网处理基于一致性诊断中的不确定性问题的研究[D];吉林大学;2007年

9 潘吉斯;一种Bayesian网络结构的并行学习方法[D];苏州大学;2006年

10 孙圢;基于Bayesian网络结构学习及推理的转炉煤气调度[D];大连理工大学;2013年



本文编号:1942877

资料下载
论文发表

本文链接:https://www.wllwen.com/kejilunwen/diqiudizhi/1942877.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户8d807***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com