天然气水合物微观弹性性质的模拟研究及应用
本文选题:天然气水合物 + 微观结构 ; 参考:《西南石油大学》2015年硕士论文
【摘要】:天然气水合物形成于低温、高压。在自然界中主要存在于陆地永久冻土层及海底沉积层中,貌似冰雪,可直接点燃;1m3的天然气水合物可以释放约164m3的甲烷天然气,可高效清洁燃烧;目前已发现的水深三千米以内天然气水合物中甲烷的碳总量相当于全世界已知传统化石能源(煤、石油和天然气)总量的两倍以上,是不可多得的战略能源。要对天然气水合物资源进行勘探与开发,钻井是最直接和主要的技术手段,成功钻取天然气水合物是整个资源开发的关键,故需要对天然气水合物在钻井过程中力学性质的变化情况进行探讨研究。 本文首先对天然气水合物的基本性质及结构稳定性进行了探讨,包括基本物理性质、地层物理特征、化学性质、微观分子结构以及晶体构成等,并通过设置模拟实验,根据第一性原理,采用密度泛函理论计算方法研究微观状态下内嵌分子对水合物分子结构的形成、稳定性的影响以及外加电场作用下天然气水合物分子结构的变化;其次,因天然气水合物分子间作用力为范德华力,分子晶体间表现为弱相互作用,故先针对尿素、冰和石墨三种体系,通过CASTEP模块确定对分子晶体进行弹性模量计算应选用的最佳应变值,从而进行天然气水合物分子结构的晶胞模拟,较为精确地计算出天然气水合物的弹性模量值,分析出天然气水合物的微观弹性性质随压力变化的规律,为宏观钻井过程中的压力控制提供理论基础;再次,探究了天然气水合物的形成条件与成藏机理,讨论其在永久冻土区和海洋区的储集特征及分布特点;最后分析了天然气水合物钻探过程中的钻井参数和难点,并结合前面模拟实验中总结的微观力学性质和宏观的形成条件,提出了使用控压钻井技术开采天然气水合物的合理建议,对复杂工况下天然气水合物稳定性的控制进行了分析。 通过上述研究,本篇论文对天然气水合物的基本性质、结构、形成与成藏给出了更加清晰的认识;不仅从微观上得出了天然气水合物的结构稳定性、外加电场作用的表现和压力对天然气水合物微观弹性性质影响规律,也从宏观上提出了天然气水合物钻井的压力控制方法,为实际工程中高效开采天然气水合物提供理论指导和帮助。
[Abstract]:Natural gas hydrate is formed at low temperature and high pressure. In nature, which mainly exists in land permafrost and submarine sediments, it looks like ice and snow, and can directly ignite 1 m3 of natural gas hydrate, which can release about 164m3 methane gas and can be burned clean and efficiently. The total carbon content of methane in gas hydrate has been found to be more than twice that of conventional fossil energy (coal, oil and natural gas) in the world, which is a rare strategic energy. To explore and develop natural gas hydrate resources, drilling is the most direct and main technical means, and successfully drilling natural gas hydrate is the key to the whole exploitation of natural gas hydrate. Therefore, it is necessary to study the change of mechanical properties of natural gas hydrate during drilling. In this paper, the basic properties and structural stability of natural gas hydrate are discussed, including the basic physical properties, stratigraphic physical characteristics, chemical properties, micromolecular structure and crystal composition, etc. According to the first principle, the density functional theory (DFT) method is used to study the influence of embedded molecules on the formation of hydrate molecular structure, the influence of stability and the change of natural gas hydrate molecular structure under the action of external electric field. Because the intermolecular force of natural gas hydrate is van der Waals force and the interaction between molecular crystals is weak, therefore, three kinds of systems, urea, ice and graphite, are first used. The optimum strain value for calculating elastic modulus of molecular crystal is determined by CASTEP module, and the unit cell simulation of the molecular structure of natural gas hydrate is carried out, and the elastic modulus value of natural gas hydrate is calculated more accurately. The microelastic properties of natural gas hydrate vary with pressure, which provides a theoretical basis for pressure control in macro drilling. Thirdly, the formation conditions and reservoir forming mechanism of gas hydrate are discussed. The reservoir characteristics and distribution characteristics in permafrost and marine areas are discussed, and the drilling parameters and difficulties in the process of gas hydrate drilling are analyzed. The reasonable suggestion of using controlled pressure drilling technology to exploit natural gas hydrate is put forward, and the control of gas hydrate stability under complex working conditions is analyzed. Through the above research, this paper gives a clearer understanding of the basic properties, structure, formation and accumulation of natural gas hydrate, and not only from the microscopic point of view, the structure stability of natural gas hydrate is obtained. The effect of external electric field and pressure on the microscopic elastic properties of natural gas hydrate is studied. The pressure control method for gas hydrate drilling is also put forward from the macroscopic view. It provides theoretical guidance and help for high efficiency exploitation of natural gas hydrate in practical engineering.
【学位授予单位】:西南石油大学
【学位级别】:硕士
【学位授予年份】:2015
【分类号】:P618.13
【参考文献】
相关期刊论文 前10条
1 史斗,,郑军卫;世界天然气水合物研究开发现状和前景[J];地球科学进展;1999年04期
2 蒋国盛,宁伏龙,黎忠文,张凌,向先超,窦斌;钻进过程中天然气水合物的分解抑制和诱发分解[J];地质与勘探;2001年06期
3 陈骥;刘晖;姜在兴;刘圣乾;梅岩辉;毕彩芹;章轩玮;周春蕾;雷欢;;天然气水合物含油气系统的形成条件、研究方法及实例分析[J];地质科技情报;2014年06期
4 张炜;范久达;吴西顺;;日本天然气水合物研发进展及对中国的启示[J];国土资源情报;2014年11期
5 魏巍;;南海中沙天然气水合物资源远景区海底沉积物的物理力学性质研究[J];海岸工程;2006年03期
6 李淑霞;陈月明;杜庆军;;SCHEMES OF GAS PRODUCTION FROM NATURAL GAS HYDRATES[J];化工学报;2003年S1期
7 董刚;龚建明;王家生;;从天然气水合物赋存状态和成藏类型探讨天然气水合物的开采方法[J];海洋地质前沿;2011年06期
8 翁焕新;许峗溢;楼竹山;苏闽华;孙向卫;;天然气水合物的稳定性及其环境效应[J];浙江大学学报(理学版);2006年05期
9 方银霞,申屠海港,金翔龙;冲绳海槽天然气水合物稳定带厚度的计算[J];矿床地质;2002年04期
10 龙学渊;袁宗明;倪杰;;国外天然气水合物研究进展及我国的对策建议[J];勘探地球物理进展;2006年03期
本文编号:2040127
本文链接:https://www.wllwen.com/kejilunwen/diqiudizhi/2040127.html