贵州省大方县锅厂穹窿构造三维模型分析
本文选题:锅厂穹窿 + GOCAD ; 参考:《成都理工大学》2017年硕士论文
【摘要】:锅厂穹隆位于贵州省西北部,距省会贵阳市约150km(直距),行政区划位于毕节地区大方县,研究区域属于属扬子地台,区内研究区褶皱构造发育,数量众多。西北部地区褶皱轴向为北东向,轴迹方位50—60o之间,从褶皱的变形程度看,以平缓-开阔褶皱为主。研究区其他地区褶皱轴向主要为南北向及北北东向,轴迹方位0~20o之间,从褶皱的变形程度看,以开阔褶皱为主,以锅厂穹窿、平寨穹隆最为典型。锅厂穹窿位于黔北台隆北缘,紧临北端坳陷区。锅厂穹隆研究区出露的地层主要有二叠系及三叠系地层。通过对大量野外资料分析及室内资料的整理并结合区域地质资料和野外地质调查,研究区的地质发展历史分为四个阶段:扬子地台基底形成阶段、扬子地台盖层发展阶段、陆相盆地演化阶段、喜马拉雅期褶皱造山演化阶段。研究区域前人虽然做过离开大量的工作,但与之相关的三维地质模型却少之又少。因此,笔者期望通过对锅厂穹隆进行三维模型的建立,作为对锅厂穹隆及响水区域的研究的参考依据。笔者主要利用GOCAD三维地质建模软件对锅厂穹隆进行三维建模,GOCAD软件插值计算的方法主要是利用DIS方法,同时可以自由选择和自动改变网格模型。三维模型可以通过Model3d和SGrid两种方法来完成,但两者的原理不同,各有各的优缺点。该软件建立的三维地质模型可以通过其所提供的功能对地质实体进行分析,软件的分析主要功能包括:Z轴缩放、旋转、分散、揭盖、个体展示、三维图切空心剖面、地形图、二维地质图及遥感图投影等。由于锅厂穹隆研究区域缺乏地球物理数据,所以模型建立的过程中笔者主要还是利用二维地质图、地质界面产状、实测剖面、图切剖面等控制锅厂穹隆深部特征,在此基础上完成模型的建立。通过对锅厂穹窿进行不同深度不同方向的空心剖面,分析出锅厂穹隆的平面延伸情况及深部具体几何特征和构造特征。最后,通过三维模型对锅厂穹隆两翼二叠系龙潭组的煤矿面积和体积进行计算及深部形态特征进行解译。
[Abstract]:The pot factory dome is located in the northwest of Guizhou province, about 150km from the provincial capital Guiyang city. The administrative division is located in Dafang county, Bijie area. The research area belongs to the Yangtze platform. The axial direction of the fold in northwestern China is north-east, and the axial direction is 50-60o. From the degree of deformation of the fold, it is mainly flat-open fold. In other areas of the study area, the axial direction of the fold is mainly from the north to the north and the north to the east, and the axial direction is between 0 and 20 o. From the degree of deformation of the fold, the main fold is open fold, the main fold is the pot factory dome, and the Pingzhai dome is the most typical. The Kuanchang dome is located in the northern margin of Taitung in northern Guizhou, and is close to the northern depression. There are Permian and Triassic strata in Kuokang Dome study area. Based on the analysis of a large amount of field data and indoor data, combined with regional geological data and field geological investigation, the geological development history of the study area is divided into four stages: the stage of the formation of the Yangtze platform basement, the stage of the development of the Yangtze platform caprock. The stage of continental basin evolution and Himalayan fold orogenic evolution. Although the former researchers have done a lot of work, there are few 3D geological models. Therefore, the author expects to establish a three-dimensional model of the pot plant dome as a reference for the study of the pot plant dome and the region of rattling water. The author mainly uses GOCAD 3D geological modeling software to carry out the 3D modeling of the pot plant dome. The interpolation method is mainly using DIS method, and the mesh model can be freely selected and automatically changed. The 3D model can be completed by Model3D and SGrid, but their principles are different, and each has its own advantages and disadvantages. The 3D geological model established by the software can be used to analyze geological entities through the functions it provides. The main functions of the software include: Z axis scaling, rotation, dispersion, uncovering, individual display, 3D map cutting hollow section, topographic map. Two-dimensional geological map and remote sensing map projection, etc. Due to the lack of geophysical data in the study area of the pot plant dome, the author mainly uses the two-dimensional geological map, the occurrence of the geological interface, the measured section, the map section, and so on to control the deep characteristics of the pot dome in the process of establishing the model. On this basis, the establishment of the model is completed. Through the hollow section of the pot factory dome with different depth and different directions, the plane extension of the pot factory dome and the specific geometric and structural characteristics of the deep part are analyzed. Finally, the area and volume of the coal mine and the deep morphological characteristics of the Longtan formation of the Permian system on the two wings of the Dome of the Kuoliang Dome are calculated and interpreted by a three-dimensional model.
【学位授予单位】:成都理工大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:P542
【参考文献】
相关期刊论文 前10条
1 孔亮;王功文;汪程;;基于Gocad三维地质建模与深部成矿预测——以河南灵宝市灵金一矿为例[J];矿物学报;2015年S1期
2 张杰;武枝;;基于GOCAD的煤矿三维地质建模分析[J];科技创新与生产力;2015年12期
3 赵文菊;王营;滕寿仁;周俊鹏;;GOCAD三维可视化在深部地质调查中的应用[J];地质与资源;2015年04期
4 裴禾;刘羽;赵莹;;基于Gocad的金川Ⅱ矿区三维地质建模方法[J];计算机光盘软件与应用;2014年03期
5 吕鹏;张炜;刘国;王淑玲;;国外重要地质调查机构三维地质填图工作进展[J];国土资源情报;2013年03期
6 金江军;潘懋;李魁星;;三维可视化技术在矿产勘查中的应用研究[J];矿产勘查;2012年05期
7 杨志华;兰恒星;张永双;;基于GIS-GOCAD耦合技术的三维地质建模[J];地理与地理信息科学;2012年05期
8 张启明;江新胜;秦建华;崔晓庄;刘才泽;;黔北—渝南地区中二叠世早期梁山组的岩相古地理特征和铝土矿成矿效应[J];地质通报;2012年04期
9 邵国波;郭艳;蔡冰;;GOCAD软件在三维地质建模中的应用[J];山东交通科技;2010年05期
10 陈国旭;吴冲龙;张夏林;田宜平;刘刚;;三维地质建模与地矿勘查图件编制一体化方法研究[J];地质与勘探;2010年03期
相关会议论文 前1条
1 朱良峰;;三维地质模型的可视化分析技术研究[A];第十三届全国图象图形学学术会议论文集[C];2006年
相关硕士学位论文 前6条
1 杨博;贵州省大方县平寨穹窿三维建模及其模型分析[D];成都理工大学;2016年
2 王德富;贵州大方地区构造样式及其成因分析[D];成都理工大学;2016年
3 庞攀;峨眉山教学实习区(黄湾地区)三维建模及构造解译[D];成都理工大学;2015年
4 张腊梅;贵州省大方县二叠纪玄武岩地球化学特征研究[D];成都理工大学;2015年
5 邓佳良;龙门山北段三堆地区构造研究与三维建模[D];成都理工大学;2014年
6 胡承伟;贵州镇远江古钒矿矿床地质地球化学特征[D];贵州大学;2009年
,本文编号:2041808
本文链接:https://www.wllwen.com/kejilunwen/diqiudizhi/2041808.html