当前位置:主页 > 科技论文 > 地质论文 >

井地电阻率成像2.5D正反演及其应用研究

发布时间:2018-07-31 08:42
【摘要】:相对于地表电阻率成像技术而言,井地电阻率成像技术将供电电极放入钻井,由于电极靠近探测目标体,故能激发出更强的异常,在地表接收电极中产生更大的电位差,其分辨率要明显优于地表装置形式。正是由于井地电阻率成像方法这些特点,因此,在城市工程勘查、深部隐伏矿床勘探以及在研究高含水期油田剩余油分布情况等方面具有很大的发展潜力和应用前景。本论文系统的总结了井地电阻率成像技术研究历史、应用现状及研究成果。在此基础上,以有限单元法对理论地电模型进行了2D正演数值模计算研究,同时利用正则化反演方法进行反演研究,取得了较好的效果。本文共分六章。第一章“绪论”部分,主要介绍了论文的研究背景、意义、井地电阻率成像正、反算法研究现状以及论文主要研究内容。第二章“井地电阻率成像的基本理论”部分,介绍了二维地电断面点源场电位满足的微分方程及边值条件,并列出了不同装置条件下计算视电阻率公式。第三章“井地电阻率成像2.5D有限单元法正演理论”部分是本章为论文的重点之一。井地电阻率法成像二维正演计算问题即是求解点源场二维电断面的边值问题,而二维地电断面电位满足的微分方程及边值条件可以等价为相应的变分问题。变分问题即泛函的极值问题,又可简化为多元函数的极值问题,而多元函数的极值问题是大家所熟知的。这就是有限单元法的基本思想。具体思路是:对点源二维地电断面,场(电位)实际上是三维的,但电位在二维目标体延伸方向具有对称性,因此可用余弦变换将电位满足的三维微分方程变成变换电位满足的二维微分方程。通过网格剖分,从而将边值方程简化为网格节点上多元函数线性方程,计算出傅氏电位,最后进行反余弦变换,即可计算出所求的电位。第四章“井地电阻率成像2.5D的正则化反演研究”部分为论文的另一个重点,主要介绍了正则化反演的基本原理,着重讨论了正则化因子和稳定因子的选取等内容。第五章“5井地电阻率成像技术的工程实例应用”部分介绍了几个应用实例及应用效果。第六章为“结论”部分,简述了工作成果以及工作中存在的欠缺之处。论文工作中,用C语言编制了井地电阻率成像2.5D正、反演程序。正演中反余弦变换采用了最优化法求解出的具有较高精度的滤波系数;反演中对正则化因子的计算方法以及稳定因子的选择对反演结果的影响进行了详细分析。通过对几种规则的地电模型试算、比较,验证了程序的准确性和有效性。在城市工程勘查的应用中,对工作区域内的溶洞、溶蚀裂隙破碎带及富水带等地质隐患亦取得了很好的勘查效果,能够精确地划分地电断面上的探测目标体的空间位置及其边界,为设计工作和后续施工提供了可靠的技术支持。
[Abstract]:Compared with the surface resistivity imaging technology, the well ground resistivity imaging technology puts the power supply electrode into the drilling. Because the electrode is close to the detecting object, it can excite stronger anomalies and produce greater potential difference in the surface receiving electrode. Its resolution is obviously superior to the surface device form. It is precisely because of these characteristics of well ground resistivity imaging that it has great development potential and application prospect in urban engineering exploration, deep hidden deposit exploration and the study of remaining oil distribution in high water-cut oil fields. This paper systematically summarizes the research history, application status and research results of well-ground resistivity imaging technology. On this basis, the 2D forward numerical model of the theoretical geoelectric model is studied by finite element method, and the regularization inversion method is used to carry out the inversion research, and good results are obtained. This paper is divided into six chapters. The first chapter, "introduction", mainly introduces the research background, significance, research status of resistivity imaging, inverse algorithm and the main research content of the paper. In the second chapter, "basic theory of borehole resistivity imaging", the differential equation and boundary condition of point source field potential in two-dimensional geoelectric section are introduced, and the formulas for calculating apparent resistivity under different conditions are listed. Chapter three, "forward theory of 2.5D finite element method for resistivity imaging of well ground", is one of the emphases of this paper. The two-dimensional forward modeling problem of borehole resistivity imaging is to solve the boundary value problem of two-dimensional electric section of point source field, and the differential equation and boundary condition of two-dimensional geoelectric section potential can be equivalent to the corresponding variational problem. The variational problem is the extreme value problem of functional, and it can be simplified as the extreme value problem of multivariate function, and the extreme value problem of multivariate function is well known. This is the basic idea of finite element method. The specific idea is that the field (potential) is actually three-dimensional for the two-dimensional geoelectric section of the point source, but the potential has symmetry in the extension direction of the two-dimensional object. Therefore, the three dimensional differential equation of potential can be transformed into two dimensional differential equation by cosine transform. The boundary value equation is simplified to the linear equation of multivariate function on the grid node by mesh division, and the Fourier potential is calculated. Finally, the potential can be calculated by inverse cosine transform. In chapter 4, "regularization inversion of well resistivity imaging 2.5D" is another important part of the paper. The basic principle of regularization inversion is introduced, and the selection of regularization factor and stability factor is discussed emphatically. In chapter 5, "Application of engineering example of 5 well resistivity imaging technology", several application examples and application results are introduced. The sixth chapter is the conclusion part, briefly describes the work results and the shortcomings in the work. In the work of this paper, a 2.5 D inversion program for well ground resistivity imaging is compiled with C language. In forward modeling, the inverse cosine transform uses the optimization method to solve the filtering coefficient with high accuracy, and the calculation method of regularization factor and the influence of the selection of stability factor on the inversion result are analyzed in detail. The accuracy and validity of the program are verified by the comparison of several regular geoelectric models. In the application of urban engineering exploration, good results have been obtained for geological hidden dangers such as caverns, fracture zones and water-rich zones in the working area. It can precisely divide the space position and the boundary of the detection object on the geoelectric section, which provides reliable technical support for the design and subsequent construction.
【学位授予单位】:东华理工大学
【学位级别】:硕士
【学位授予年份】:2015
【分类号】:P631.322

【相似文献】

相关期刊论文 前10条

1 韩波,刘家琦;离散牛顿正则化方法及应用[J];计算物理;1993年03期

2 毛玉明;郭杏林;赵岩;吕洪彬;;基于精细计算的动载荷反演问题正则化求解[J];动力学与控制学报;2009年04期

3 韩云瑞;正则化方法解线性方程的收敛速度[J];清华大学学报(自然科学版);1986年06期

4 肖庭延,齐忠涛;解二维卷积型积分方程的正则化方法[J];装甲兵工程学院学报;1996年02期

5 王登刚,刘迎曦,李守巨;二维稳态导热反问题的正则化解法[J];吉林大学自然科学学报;2000年02期

6 杜华栋,黄思训,石汉青;一维半地转浅水模式反演的理论分析和数值试验[J];水动力学研究与进展(A辑);2004年01期

7 张瑞;李功胜;;求解病态问题的一种新的正则化子与正则化算法[J];工程数学学报;2006年01期

8 顾勇为;归庆明;张磊;;基于复共线性诊断的正则化方法[J];信息工程大学学报;2007年04期

9 蔡传宝;汤文成;;基于有限元法-正则化的弹性模量反求算法研究[J];应用力学学报;2009年01期

10 王彦飞;数值求解迭代Tikhonov正则化方法的一点注记[J];数值计算与计算机应用;2002年03期

相关会议论文 前8条

1 杨元喜;徐天河;;综合验前模型信息和验后观测信息的自适应正则化方法[A];《大地测量与地球动力学进展》论文集[C];2004年

2 解凯;吕妍昱;;一种高效的正则化参数估计算法[A];全国第19届计算机技术与应用(CACIS)学术会议论文集(上册)[C];2008年

3 苏利敏;王耀威;王彦飞;;基于SAR特征的正则化计算方法及其在纹理分类中的应用[A];第25届中国控制会议论文集(下册)[C];2006年

4 曹毅;吕英华;;基于微遗传算法和正则化处理的模糊图像复原方法[A];全国第13届计算机辅助设计与图形学(CAD/CG)学术会议论文集[C];2004年

5 周定法;薄亚明;;解电磁逆散射问题的截断完全最小二乘方法[A];第七届工业仪表与自动化学术会议论文集[C];2006年

6 魏素花;王双虎;许海波;;轴对称物体X射线层析成像的正则化方法[A];全国射线数字成像与CT新技术研讨会论文集[C];2012年

7 刘晓芳;徐文龙;陈永利;;基于非二次正则化的并行磁共振图像保边性重建[A];浙江生物医学工程学会第九届年会论文汇编[C];2011年

8 王金海;王琦;郑羽;;基于L_1正则化和投影方法的电阻抗图像重建算法[A];天津市生物医学工程学会第三十三届学术年会论文集[C];2013年

相关博士学位论文 前10条

1 钟敏;反问题多尺度迭代正则化方法[D];复旦大学;2014年

2 产文;Web社区问答检索的关键技术研究[D];复旦大学;2014年

3 王静;电阻抗成像的几种正则化方法研究[D];哈尔滨工业大学;2015年

4 李维;有限元方法和正则化策略在光学分子影像中的应用[D];西安电子科技大学;2015年

5 闫青;基于梯度正则化约束的图像重建算法研究[D];上海交通大学;2014年

6 方晟;基于正则化的高倍加速并行磁共振成像技术[D];清华大学;2010年

7 肖铨武;基于核的正则化学习算法[D];中国科学技术大学;2009年

8 薛晖;分类器设计中的正则化技术研究[D];南京航空航天大学;2008年

9 王林军;正则化方法及其在动态载荷识别中的应用[D];湖南大学;2011年

10 吴颉尔;正则化方法及其在模型修正中的应用[D];南京航空航天大学;2007年

相关硕士学位论文 前10条

1 焦彩红;正则化夹角间隔核向量机[D];河北大学;2015年

2 牛征骥;基于混合范数的电阻率反演算法研究[D];大连海事大学;2015年

3 杨娇;参数变化识别问题的稀疏约束正则化方法及应用[D];哈尔滨工业大学;2015年

4 张衍敏;基于正则化的多分散系纳米颗粒粒度反演优化方法研究[D];齐鲁工业大学;2015年

5 吴瀚;对于使用Adaptive Lp正则化的线性回归问题在高维情况下渐近性质的讨论[D];复旦大学;2014年

6 余钜东;正则化方法解决神经网络稀疏化问题[D];大连理工大学;2015年

7 高路;基于Bregman的CT稀疏角度迭代重建研究[D];西安电子科技大学;2014年

8 周阳权;井地电阻率成像2.5D正反演及其应用研究[D];东华理工大学;2015年

9 董国志;反问题的正则化方法及其计算[D];湖南师范大学;2012年

10 岳建惠;电阻率成像反问题的混合正则化方法研究[D];大连海事大学;2012年



本文编号:2155045

资料下载
论文发表

本文链接:https://www.wllwen.com/kejilunwen/diqiudizhi/2155045.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户fb993***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com