喜马拉雅造山带中段亚东地区片麻岩的早古生代岩浆作用与新生代变质作用
[Abstract]:The Yadong region is located in the middle part of the Himalayan orogenic belt, where the high Himalayan crystalline series is mainly composed of shaly schist, felsic gneiss and a small amount of quartzite, marble, mafic rock and calcium silicate. These rocks were invaded by large areas of pale granite. The petrology and zircon chronology of normal gneiss in this area have been studied in this paper. The normal gneiss studied is divided into two categories: the first is dark gneiss, the mineral composition is mainly quartz (30%), plagioclase (30%), potassium feldspar (20%), biotite (3 5%), and contains or does not contain a small amount of Muscovite and hornblende, and is mainly composed of quartz (30%), plagioclase (30%), potassium feldspar (20%), biotite (3%), and amphibolite. The results of petrochemical analysis showed that the Sio _ 2 content of the three dark gneisses was between 68.50 wt.%~76.55 wt.% and 13.22 wt.%~14.97 wt.%, and the total alkali content (Na2O K _ 2O) was between 5.64 wt.%~7.64 wt.% and 1.061.14, respectively. All of them are peraluminous. The three samples have high total REE content, rich in large ion lithophile elements such as RB ~ (+) K and high field strength elements such as Th ~ (3 +) Ta, and are poor in large ion lithophile elements, such as Ba-Sr and NB ~ (+) Ti, and in light-colored gneiss, the second is light-colored gneiss, and the other is light-colored gneiss. The mineral composition is mainly quartz (300.35%), plagioclase (2530%), potash feldspar (2530%), biotite (30.5%), or small amount of sillimanite. The Sio _ 2 content of the two light-colored gneiss is 77.83 wt.% and 75.19 wt.Al _ 2O _ 3 are 13.47 wt.% and 14.15 wt.t.The Cao is 0.31 wt.% and 0.60 wt. respectively, and the total alkali content (Na2O K2O) is 0.60 wt. The CNK values of 7.01 wt.% and 7.78 wt.% were 1.84 and 1.48, respectively, which were peraluminous, the total REE of the two samples was lower, It is rich in large ion lithophile elements such as RbBK, depleted in large ion lithophile elements such as Ba and Sr, and in high field strength elements such as Thn NbPTi. The zircon in the gneiss is mainly composed of a magmatic core and a narrow metamorphic edge. A small amount of zircon has no core-edge structure and is a single grain metamorphic zircon. The REE partition model in the core of zircon is characterized by the negative anomaly of rich HREE EU, and the metamorphic edge of zircon and the single grain metamorphic zircon have relatively low REE content and negative EU anomaly. The U-Pb chronological analysis of zircon shows that the weighted mean age of 478 卤14Ma~507 卤40Ma in the magmatic core of the five samples represents the early Paleozoic age of the gneiss. A Cenozoic age of 20.8 卤1.8 Ma~22.8 卤5.5 Ma has been obtained in the zircon metamorphic domain. The zircon HF isotopic analysis of the dark gneiss shows that the 蔚 Hf (t) values of the zircon core are 8.1 ~ 0.1, 5.9- and 4.86.7TDM2 respectively, and the ages of 1.441.96Ga 1.591.83 Ga and 1.03U 1.76Ga are much larger than the crystallization age of the sample. This indicates that they originated from partial melting of ancient continental crust material. The above data indicate that the studied dark gneiss is the product of the Cenozoic metamorphism of the early Paleozoic granite. The light-colored gneiss is the product of the deformation of the paleozoic granites formed by the deep melting of the early Paleozoic granites in the Cenozoic. This study shows that the norneiss in the Himalayan orogenic belt has a record of early Paleozoic orogeny, that is, the proto-Tethys ocean subducted to the northern margin of Gondwana continent. These normal gneisses also recorded Cenozoic metamorphic and deep melting events reflecting the collision orogeny of the Indo-Eurasian plate.
【学位授予单位】:中国地质大学(北京)
【学位级别】:硕士
【学位授予年份】:2016
【分类号】:P588.3
【相似文献】
相关期刊论文 前10条
1 朱丽英;;早古生代高变质藻煤的煤岩特征及其地质意义[J];地质论评;1983年03期
2 ;陕南早古生代煤性质及成因的初步研究[J];煤田地质与勘探;1975年05期
3 赵凤游;;北祁连区早古生代生物地层研究的进展[J];青藏高原地质文集;1983年05期
4 高长林,黄泽光,叶德燎,刘光祥,吉让寿,秦德余;中国早古生代三大古海洋及其对盆地的控制[J];石油实验地质;2005年05期
5 楼雄英,许效松;塔里木盆地早古生代晚期构造-沉积响应[J];沉积与特提斯地质;2004年03期
6 李佐臣;裴先治;刘战庆;李瑞保;丁仨平;张晓飞;陈国超;刘智刚;陈有;王学良;;扬子地块西北缘后龙门山南华纪—早古生代沉积地层特征及其形成环境[J];地球科学与环境学报;2011年02期
7 韩宝福,何国琦,吴泰然,李惠民;天山早古生代花岗岩锆石U-Pb定年、岩石地球化学特征及其大地构造意义[J];新疆地质;2004年01期
8 贾振远,李志明,蔡忠贤;中国古大陆及其边缘早古生代层序地层及海平面变化的基本特征[J];地球科学;1997年05期
9 雒昆利,苏文智,杜美利,雷福尧;南秦岭早古生代石煤的微量元素[J];西安矿业学院学报;1995年02期
10 蔡志慧;许志琴;段向东;李化启;曹汇;黄学猛;;青藏高原东南缘滇西早古生代早期造山事件[J];岩石学报;2013年06期
相关会议论文 前10条
1 刘豪;王英民;;塔里木盆地早古生代陆架坡折发育特征与演化初探[A];第八届古地理学与沉积学学术会议论文摘要集[C];2004年
2 赵凤游;;北祁连区早古生代生物地层研究的进展[A];青藏高原地质文集(2)——地层·古生物——青藏高原地质科学讨论会论文集(一)[C];1979年
3 周志毅;;西北地区早古生代地质[A];西部大开发 科教先行与可持续发展——中国科协2000年学术年会文集[C];2000年
4 周志毅;;西北地区早古生代地质[A];中国古生物学会第21届学术年会论文摘要集[C];2001年
5 秦秀峰;郭原生;汪岩;匡永生;刘旭光;周世强;;大兴安岭北端漠河早古生代埃达克质岩特征及其地质意义[A];2006年全国岩石学与地球动力学研讨会论文摘要集[C];2006年
6 许志琴;杨经绥;梁凤华;刘福来;曾令森;戚学祥;陈松永;刘敦一;;泛非-早古生代造山事件与原始喜马拉雅的形成[A];2004年全国岩石学与地球动力学研讨会论文摘要集[C];2004年
7 郭养和;;东南大陆早古生代古地理轮廓[A];中国地质科学院南京地质矿产研究所文集(50)[C];1991年
8 马醒华;;华北早古生代岩石重磁化问题的岩石磁学实验研究[A];中国地质科学院“九五”科技成果汇编[C];2001年
9 王金荣;吴继承;汤中立;贾志磊;吴春俊;;北祁连造山带东段早古生代构造岩浆作用及成矿的研究[A];中国矿物岩石地球化学学会第11届学术年会论文集[C];2007年
10 董顺利;李忠;高剑;朱炼;;阿尔金—祁连—昆仑造山带早古生代构造格架及结晶岩年代学研究进展[A];中国科学院地质与地球物理研究所2013年度(第13届)学术论文汇编——岩石圈演化研究室[C];2014年
相关博士学位论文 前4条
1 郑宁;湘赣南部及粤北部早古生代沉积—构造演化[D];中国地质科学院;2012年
2 杨子江;新疆阿尔金红柳沟一带早古生代地质构造演化研究[D];中国地质科学院;2012年
3 康磊;南阿尔金高压—超高压变质带早古生代多期花岗质岩浆作用及其地质意义[D];西北大学;2014年
4 王兴安;华北板块北缘中段早古生代—泥盆纪构造演化[D];吉林大学;2014年
相关硕士学位论文 前8条
1 杨朝;全球早古生代造山带:板块重建与古大陆[D];中国海洋大学;2015年
2 李涛;原特提斯北界西段早古生代构造变形及微陆块演化[D];中国海洋大学;2015年
3 张乔;福建中部志留纪辉长岩和Ⅰ型花岗岩成因及构造意义[D];南京大学;2015年
4 周宾;柴北缘西段绿梁山一带早古生代岩浆作用与成矿[D];中国地质大学(北京);2013年
5 唐磊;喜马拉雅造山带中段亚东地区片麻岩的早古生代岩浆作用与新生代变质作用[D];中国地质大学(北京);2016年
6 李松彬;阿尔金北缘喀腊大湾地区早古生代构造演化[D];中国地质科学院;2013年
7 吴鹏;贺兰山地区早古生代地层分区研究[D];中国海洋大学;2013年
8 冯坚;伊春—延寿构造带早古生代构造属性研究[D];吉林大学;2012年
,本文编号:2159538
本文链接:https://www.wllwen.com/kejilunwen/diqiudizhi/2159538.html