当前位置:主页 > 科技论文 > 地质论文 >

北半球末次冰盛期多年冻土分布特征

发布时间:2018-08-09 13:48
【摘要】:末次盛冰期以来地球气候发生了巨大的变化,其中气温的上升以及大气中碳含量的显著增加是两个重要特征。末次冰期多年冻土曾经向南大范围扩张,究竟从整个北半球来看古冻土分布达到什么程度,是一个亟待解决的问题。同时,进入全新世大暖期之后,多年冻土出现了大范围的退化,多项研究表明,多年冻土的退化对大气温度的正反馈效应是不可忽视的一部分。目前多年冻土中保存有大量的碳,其数量比大气中碳含量的两倍还多。多年冻土退化将会有多少碳释放到大气中,以及大气中碳含量的增加将会导致全球气温进一步升高多少等都是研究古冻土与气候变化的一个新的热点领域。本研究通过参与国际冻土协会(IPA)北半球古冻土图编制工作小组,收集到了经过国际冻土协会认可的各个多年冻土区古冻土分布图、古冰盖分布图、连续与不连续古多年冻土界限以及残余多年冻土资料图,结合末次冰期裸露的地表、DEM提取的现代海拔高度等数据制作比例尺为1:2000万,分辨率较高的北半球古冻土最盛期分布图(The LPM Map)。并利用该地图数据计算末次冰盛期古冻土分布特征和不同条件下冻土的分布与现代冻土分布的对比,同时,计算出末次盛冰期(LGM)以来多年冻土区退化的面积及特征。需要说明的是该地图具有一定的局限性,比如,残余多年冻土数据不是很精确;连续与不连续多年冻土界线仅在低海拔地区标注出来,在高海拔地区因为受到诸多因素的影响而没有标注;随着新的古冰缘现象的发现该地图是暂时的并且具有即时更新性。文章根据最新版的冻土分布地图提出了古冻土分布特征和面积统计:以现代海岸线为标准,北半球末次冰盛期古多年冻土(LPM)总面积为50.32×106km2(包括冰盖下陆地),欧亚大陆上分布的多年冻土区占总面积的2/3以上,LPM面积占北半球陆地面积的52.77%;除去冰盖下的陆地面积,这个数字为33.5×106kmm2。若以LGM时期的大陆面积计算,LPM面积为58.03×106kmm2。末次冰期古冰盖面积为21.344×106kmm2,主要分为北美、欧洲、格陵兰和西伯利亚四个冰盖区。古多年冻土分布的特征:古多年冻土曾广泛分布于北半球,整个北半球的非高山地带45。N以北区域基本都属于多年冻土区,而在中国中东部最南可达37。N。高山地带的多年冻土下界在1000m-2000m之间,北美洲古多年冻土下界略高于青藏高原古多年冻土下界。末次冰期古多年冻土在纬度分布上与现代多年冻土一样有三个峰值,分别在30°-400N、45°-48°N和66°N附近,但在30°-40°N的峰值较为平缓;在经度分布上90°W和90°E是古多年冻土分布的最大经度带,与现代多年冻土一样均有两个分布峰值,但两个峰值的差值没有现代多年冻土的大;在海拔分布上古多年冻土主要分布在海拔1000m以下的区域,但2000-5000m比现代多年冻土分布更多的冻土面积。研究多年冻土的退化情况发现,多年冻土区面积减少约27.53×106km2,退化的面积比现代多年冻土区面积还多4.74×106km2:海底多年冻土面积估计为:6.85×106km2,而残余多年冻土区面积(不包括海底多年冻土)在9.40-9.92×106km2之间。LPM在欧洲地区退化最为严重,南界从45°N附近退化至斯堪的纳维亚半岛以北,退化幅度为15~22个纬度;在青藏高原地区以及中亚高山地区古冻土分布下界由1500-2000m上升到3500-5300m左右;中国东部地区LPM退化面积相对较少,由秦岭-黄河-山东半岛一线退缩至黑龙江北部一代,约8个纬度左右;北美洲北部大部分地区被冰盖所覆盖,多年冻土南界与局部地形因素有关,LPM的退化较为均匀具有良好的梯度性,退化幅度为8-15个纬度。这与前人的研究结果相似,但本文中的结果更加宏观,变化幅度更大。本文的研究结果较为宏观的提出了北半球末次冰期古多年冻土的分布特征以及面积统计,为多年冻土退化的碳释放量的估算提供了数据支持。本研究也是对前人研究的一个综合,将各个地区的古冻土的研究放在更大的尺度上分析与描述,接下来的研究需要探究古气候变化与古多年冻土退化之间的关系,并且根据现代多年冻土碳密度、IPCC报告中的相关数据以及多年冻土退化的面积,可以粗略得出末次冰期以来因多年冻土退化碳排放增加而对大气中碳含量增加的贡献值。
[Abstract]:Great changes have taken place in the earth's climate since the last glacial period. The rise of the temperature and the significant increase of the carbon content in the atmosphere are two important features. The permafrost in the last glacial extended to the south, and the extent to which the distribution of the permafrost from the whole northern hemisphere is to be solved is an urgent problem. After the Holocene warm period, permafrost has been degraded in a wide range. Many studies have shown that the positive feedback effect of permafrost degradation on atmospheric temperature is an innegligible part. There is a large amount of carbon stored in permafrost, more than two times the amount of carbon in the atmosphere. How much carbon release will be released in permafrost degradation In the atmosphere, and the increase in carbon content in the atmosphere will lead to a further increase in global temperature and so on. It is a new hot area to study the changes in the permafrost and climate. By participating in the working group of the northern hemisphere palaeo permafrost map, this study collects the various many approved by the international tundra Association. The distribution map of the palaeo permafrost in the permafrost region, the distribution map of the ancient ice cover, the boundary of continuous and discontinuous permafrost and the data of the residual permafrost, combined with the bare surface of the last glacial period, and the modern elevation height of the DEM extracted by the data of 1:2000 million and the highest resolution of the northern hemisphere palaeo permafrost (The LPM Map). This map is used to calculate the distribution characteristics of the palaeo permafrost in the last ice age and the distribution of permafrost under different conditions. At the same time, the area and characteristics of the degradation in permafrost region since the last glacial period (LGM) are calculated. It should be explained that the map has a definite limitation, for example, the residual permafrost data is not. It is accurate; continuous and discontinuous permafrost boundaries are marked only at low altitudes, and are not labeled at high altitudes because of many factors. With the discovery of the new palaeo palaeo permafrost, the map is temporary and has immediate renewal. The article based on the latest version of the frozen soil map. Distribution characteristics and area statistics: with the modern coastline as the standard, the total area of the old permafrost (LPM) in the last glacial period in the northern hemisphere is 50.32 * 106km2 (including the ice covered land). The permafrost regions on the Eurasian continent account for more than 2/3 of the total area of the total area, and the area of the LPM occupies 52.77% of the land area in the northern hemisphere; the land area under the ice cover is removed, this number The 33.5 x 106kmm2. is calculated in the continental area of the LGM period. The area of the LPM area of the last glacial period of 58.03 x 106kmm2. is 21.344 x 106kmm2, mainly divided into four ice cover areas of North America, Europe, Greenland and Siberia. The characteristics of the paleo Permafrost Distribution: the ancient permafrost was widely distributed in the northern hemisphere and the whole northern hemisphere was not Alpine The northern region of the zone of 45.N is basically permafrost region, while the Permafrost Boundary in the most South reaches of 37.N. alpine zone in the Middle East of China is 1000m-2000m, and the lower Permafrost Boundary in the North American paleo permafrost is slightly higher than that of the palaeo permafrost lower boundary of the Qinghai Tibet Plateau. The last glacial permafrost in the latitudinal distribution was the same as that of the modern permafrost in the latitude distribution. The peak values are in the vicinity of 30 -400N, 45 -48 N and 66 degree N, but the peak value at 30 degree -40 N is relatively gentle; 90 degree W and 90 degree E are the largest longitude zones of the ancient Permafrost Distribution on the distribution of longitude, and there are two distribution peaks as in the modern permafrost, but the difference values of the two peaks are not larger than those of the modern permafrost. The annual permafrost mainly distributes in the area below 1000m altitude, but 2000-5000m is more permafrost area than the modern permafrost. The study of permafrost degradation shows that the area of permafrost area is reduced by about 27.53 x 106km2, and the degraded area is 4.74 x 106km2 more than that of the modern permafrost area: the area of the permafrost is estimated as: 6.85 x 106km2, and the residual permafrost area (excluding the permafrost of the seabed) between 9.40-9.92 * 106km2 and.LPM is the most serious degradation in the European region. The southern boundary degenerates from 45 degree N to the north of Scandinavia Peninsula, and the degradation is 15~22 latitudes, and the lower boundary of the palaeo permafrost in the Qinghai Tibet Plateau and the Middle Asian alpine region is the lower boundary. 1500-2000m is up to about 3500-5300m, and the degraded area of LPM in eastern China is relatively small, from Qinling Mountains the Yellow River Shandong Peninsula to a generation in northern Heilongjiang, about 8 latitudes. Most of northern North America is covered by ice cover, and the southern permafrost boundary is related to local terrain factors, and the degradation of LPM is more uniform. A good gradient is 8-15 latitudes, which is similar to the results of previous studies, but the results in this paper are more macroscopic and larger. The results of this study put forward the distribution characteristics and area statistics of the paleo permafrost in the last glacial period in the northern hemisphere, and estimate the carbon release of permafrost degradation. This study is also a synthesis of previous studies. The study of permafrost in various regions is analyzed and described on a larger scale. The next study needs to explore the relationship between paleoclimate change and paleopermafrost degradation, and the related data in the IPCC report are based on the carbon density of the modern multi-year permafrost. And the area of permafrost degradation can be used to estimate the contribution of carbon emissions to the increase of atmospheric carbon content since the last ice age.
【学位授予单位】:兰州大学
【学位级别】:硕士
【学位授予年份】:2015
【分类号】:P642.14

【相似文献】

相关期刊论文 前10条

1 张秀敏;盛煜;赵林;吴吉春;陈继;杜二计;游艳辉;;基于分区和多元数据的青藏高原温泉区域多年冻土分布研究[J];地理科学;2012年12期

2 ;冻土[J];中国地理科学文摘;1999年03期

3 王彪,盛煜,刘建平;小兴安岭黑大公路沿线多年冻土分布及退化状态[J];冰川冻土;2001年03期

4 吴吉春;盛煜;于晖;李金平;;祁连山中东部的冻土特征(Ⅰ):多年冻土分布[J];冰川冻土;2007年03期

5 李静;盛煜;陈继;吴吉春;;青海省柴达尔—木里地区道路沿线多年冻土分布模拟[J];地理科学进展;2010年09期

6 李昆;陈继;赵林;张秀敏;庞强强;方红兵;刘广岳;;基于综合调查的西昆仑山典型区多年冻土分布研究[J];冰川冻土;2012年02期

7 曾仲巩,黄以职,夏志英,M.K.Seguin;青藏公路沥青路面下多年冻土分布的雷达探测[J];冰川冻土;1993年01期

8 张勇;蔡石泉;;青藏高原多年冻土分布的特点及与高纬度地区对比[J];青藏高原地质文集;1984年01期

9 张艳,吴青柏,刘建平;小兴安岭地区黑河—北安段多年冻土分布特征[J];冰川冻土;2001年03期

10 石剑,王育光,杜春英,王萍;黑龙江省多年冻土分布特征[J];黑龙江气象;2003年03期

相关会议论文 前4条

1 张勇;蔡石泉;;青藏高原多年冻土分布的特点及与高纬度地区对比[A];青藏高原地质文集(14)——青海专辑[C];1984年

2 程志刚;刘晓东;赵林;;青藏高原未来气候变化及其对高原多年冻土分布的影响[A];青藏高原资源·环境·生态建设学术研讨会暨中国青藏高原研究会2007学术年会论文摘要汇编[C];2007年

3 李静;盛煜;吴吉春;张波;叶柏生;王杰;张秀敏;秦翔;;祁连山西段疏勒河上游山地多年冻土分布模拟与地温分带特征分析[A];第十一届全国土力学及岩土工程学术会议论文集[C];2011年

4 汪双杰;章金钊;路勋;陈建兵;;青藏公路沿线多年冻土分布及影响因素分析[A];2004年道路工程学术交流会论文集[C];2004年

相关硕士学位论文 前2条

1 万旭东;北半球末次冰盛期多年冻土分布特征[D];兰州大学;2015年

2 王之夏;多年冻土分布模型在青藏高原的应用研究[D];兰州大学;2010年



本文编号:2174263

资料下载
论文发表

本文链接:https://www.wllwen.com/kejilunwen/diqiudizhi/2174263.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户fded2***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com