当前位置:主页 > 科技论文 > 地质论文 >

赤峰红山子岩体斑状黑云母碱长花岗岩年代学及地球化学特征

发布时间:2018-08-16 15:55
【摘要】:红山子岩体位于西拉木伦河断裂以南和赤峰—开源断裂带以北的辽源地块,岩性主要为碱长花岗岩,属沽源—红山子火山岩铀成矿带重要的组成部分。呈北东向展布于红山子火山塌陷盆地东南部,面积约为290km2。本人在收集整理前人研究成果的基础上,选择以红山子岩体斑状黑云母碱长花岗岩为研究对象,利用LA-ICP-MS锆石U-Pb同位素定年,确定碱长花岗岩的形成年代;通过岩石学、岩石地球化学分析;结合已有的地质资料及相关地质背景,讨论斑状黑云母碱长花岗岩的成因、物源;根据区内A型花岗岩的年代学推测蒙古—鄂霍次克海的闭合时间。斑状黑云母碱长花岗岩LA-ICP-MS锆石U-Pb同位素定年的206Pb/238U年龄为151.4Ma±1.1Ma(MSWD=0.57),为晚侏罗世,与区域内晚侏罗世新民组的流纹岩属同时代岩浆活动的产物。岩石地球化学数据显示,斑状黑云母碱长花岗岩高硅(SiO2=74.26~74.94%)、富碱(ALK=8.74~9.11%)、富钾(K2O/Na2O=1.29~1.35),属高钾钙碱性系列;具有较低的FeOT/MgO(12.27~14.66%,平均为13.03%)、贫铝(12.42~12.66%,平均为12.57%),A/CNK=0.93~0.96,贫镁(0.16~0.19%,平均为0.18%)、贫磷(P2O5=0.02~0.03%,平均为0.02%)、高分异(DI=92.33~92.94)等特征。稀土元素总量(不含Y)较高,轻稀土元素明显富集,轻重稀土元素分馏明显,呈明显“右倾”,具有强烈的Eu负异常。微量元素特征显示斑状黑云母碱长花岗岩富集高场强元素Th、U、Zr、Hf等,亏损Ta、Nb、P等高场强元素;富集大离子亲石元素Rb、K及轻稀土元素La、Ce,亏损Ba、Sr等大离子亲石元素,为低Ba-Sr花岗岩。红山子岩体斑状黑云母碱长花岗岩10000Ga/Al=3.27~3.96,平均为3.54(大于2.6),Zr+Nb+Ce+Y含量为512.6×10-6~642.9×10-6,平均为562.1×10-6,大于350×10-6;在Nb vs 10000Ga/Al、Zr vs 10000Ga/Al、(K2O+Na2O)/Ca vs 10000Ga/Al、(K2O+Na2O)/CaO vs Zr+Nb+Ce+Y、FeOT/MgO vs Zr+Nb+Ce+Y图解中,投入A型花岗岩区域内,且锆石饱和温度为814℃~837℃,为A型花岗岩。斑状黑云母碱长花岗岩具有较高的Rb/Sr=17.56~19.90(0.5),较低的Ti/Y=10.40~11.60,Ti/Zr=2.14~2.77(20)。Nb/Ta=12.58~12.94,平均为12.76;低的Mg#(平均12.23)及低Cr(平均2.33×10-6)、Ni(平均0.60×10-6)、Co(平均0.57×10-6)、V(平均5.74×10-6)。红山子岩体斑状黑云母碱长花岗岩主要是来自富集地幔的岩浆底侵,导致中上地壳在部分熔融过程中混染而成。在主量元素构造判别图MgO-FeOT图解中,斑状黑云母碱长花岗岩落入POG区域边缘,在SiO2-Al2O3、FeOT+MgO-CaO及FeOT/(FeOT+MgO)-SiO2图解中,落入POG范围内;在R1-R2图解中,样品落入后造山伸展拉张环境范围内;在Lg[CaO/(K2O+Na2O)]-SiO2图解中,落入伸展拉张环境中。在微量元素构造环境判别图Y+Nb-Rb和Y-Nb图解中,样品点落于板内(WPG)范围内。以上结果表明斑状黑云母碱长花岗岩产于伸展拉张环境中。基于其时空因素,斑状黑云母碱长花岗岩的形成可能与北部的蒙古—鄂霍次克海缝合带存在密切的关系。大兴安岭南段出露广泛的晚侏罗世A型花岗岩(流纹岩),表明晚侏罗世已进入伸展拉张环境,因此蒙古—鄂霍次克海应于晚侏罗世之前闭合。
[Abstract]:The Hongshanzi pluton is located in the Liaoyuan block south of the Xilamulun River fault and north of the Chifeng-Kaiyuan fault zone. Its lithology is mainly alkali-feldspar granite, which is an important part of the Guyuan-Hongshanzi volcanic rock uranium metallogenic belt. It is distributed in the southeastern part of the Hongshanzi volcanic subsidence basin with an area of about 290km 2. On the basis of the research results, the porphyry biotite alkali-feldspar granite of Hongshanzi intrusion is selected as the research object, and the formation age of alkali-feldspar granite is determined by LA-ICP-MS zircon U-Pb isotope dating; the petrology and geochemical analysis are carried out; the porphyry biotite alkali-feldspar granite is discussed in combination with the existing geological data and related geological background. The 206Pb/238U age of porphyritic biotite alkali-feldspar granite LA-ICP-MS zircon U-Pb isotope dating is 151.4Ma (+1.1Ma) (MSWD=0.57), which is a Late Jurassic rhyolite belonging to the Late Jurassic Xinmin Formation. Petrogeochemical data show that porphyry biotite alkali-feldspar granites are high in silicon (SiO2 = 74.26-74.94%), rich in alkali (ALK = 8.74-9.11%) and rich in potassium (K2O/Na2O = 1.29-1.35), belonging to the high potassium-calc-alkaline series; have low FeOT/MgO (12.27-14.66%, average 13.03%) and poor in aluminum (12.42-12.66%, average 12.57%), A/CNK = 0.93-0.96, poor in magnesium (0.16-0.19%, average). They are all 0.18%, poor in phosphorus (P2O5 = 0.02-0.03%, average 0.02%) and highly differentiated (DI = 92.33-92.94). The total amount of REEs (excluding Y) is high, the light and heavy REEs are obviously enriched, the fractionation of light and heavy REEs is obvious, and the fractionation of light and heavy REEs is obvious, showing a "right-dip" and a strong negative Eu anomaly. The elements Th, U, Zr, Hf and so on are deficient in high field strength elements such as Ta, Nb and P, enriched in large ion lithophilic elements Rb, K and light rare earth elements La, Ce, deficient Ba, Sr and other large ion lithophilic elements such as low Ba-Sr granite, Hongshanzi porphyry biotite alkali-feldspar granite 10 000 Ga/Al = 3.27-3.96, with an average content of 3.54 (more than 2.6), and Zr+Nb+Ce+Y content of 512.6 *10-6-642.9 *10-6, respectively. The average value is 562.1 x 10-6, greater than 350 x 10-6, larger than 350 x 10-6; in Nb vs 10000 Ga/Al, Zr vs 10000 Ga/Al, (K2O + Na2O) / Ca vs 10000 Ga/Al, (K2O + Na2O) / CaO vs Zr + Nb + Ce + Y, FeOT / MgO vs Zr + Nb + Nb + Ce + Y, FeOT / MgO vs Zr + Nb + Nb + Ce + Ce + Y, feOT / MgO vs Zr + Nb + Nb + Ce + Ce + Y, the input A type grangranite area, and the saturation temperature of zircis 814 ~834 ~837 (-A type grangrangrangranite type granite-alk-alk-type = 1 7.56-19.90 (0.5), low Ti/Y = 10.40-11.60, Ti/Zr = 2.14-2.77 (20).Nb/Ta = 12.58-12.94, average 12.76; low Mg\# (average 12.23) and low Cr (average 2.33 x 10-6), Ni (average 0.60 x 10-6), Ni (average 0.60 x 10-6, Co (average 0.57 x 10-10-6), Co (average 0.57 x 0.57 x 10-10-6, V (average 5.74 x 10-10-6). Hong-sorbitbitite porphyphyphyry biotbiotbiotbiotbiotbiotbiotite alk-granite-alk-fegranite granite-granite-granite-granite-granite-alk-granite-In the meantime, it is necessary to study the relationship between the two. In the MgO-FeOT diagram, biotite alkali-feldspar porphyry granite falls into the edge of POG region, and falls into the POG range in SiO2-Al2O3, FeOT+MgO-CaO and FeOT/(FeOT+MgO) -SiO2 diagrams. In Lg [CaO/(K2O+Na2O)]-SiO2 diagrams, the samples fall into extensional environments. In Y+Nb-Rb and Y-Nb diagrams of trace element tectonic environments, the samples fall within the range of intraplate (WPG). The above results show that porphyry biotite alkali-feldspar granites occur in extensional environments. Based on their spatiotemporal factors, porphyry biotite alkali-feldspar granites are formed. There may be a close relationship with the Mongolia-Okhotsk Sea suture zone in the north. The extensive occurrence of Late Jurassic A-type granites (rhyolite) in the southern section of the Great Hinggan Mountains indicates that the Late Jurassic has entered an extensional environment, so the Mongolia-Okhotsk Sea should be closed before the Late Jurassic.
【学位授予单位】:东华理工大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:P597.3;P588.121

【相似文献】

相关期刊论文 前10条

1 王勇;吕庆田;孟贵祥;严加永;杨岳清;赵金花;;内蒙东七一山碱长花岗岩及其成矿作用[J];地质学报;2009年10期

2 吕博;杨岳清;孟贵祥;严加永;赵金花;王守光;贾玲珑;彭润民;;内蒙古东七一山碱长花岗岩的地球化学特征和成因[J];岩石矿物学杂志;2011年03期

3 王艳丽;祝新友;刘志刚;傅其斌;;广西栗木钨锡稀有金属矿床碱长花岗岩的厘定[J];华南地质与矿产;2013年01期

4 周瑞文;钾长-碱长花岗岩与稀土铌钽成矿的关系[J];地质与勘探;1982年12期

5 廖世勇;尹福光;王冬兵;唐渊;孙志明;孙洁;;滇西“三江”地区临沧花岗岩基中三叠世碱长花岗岩的发现及其意义[J];岩石矿物学杂志;2014年01期

6 祝新友;王京彬;王艳丽;程细音;何鹏;傅其斌;李顺庭;;南岭锡钨多金属矿区碱长花岗岩的厘定及其意义[J];中国地质;2012年02期

7 傅其斌;祝新友;程细音;赵晶晶;王艳丽;;云南个旧卡房锡-铜矿床碱长花岗岩厘定及意义[J];矿物学报;2013年01期

8 章锦统,夏卫华;黄玉碱长花岗岩及其矿床[J];地质科技情报;1988年04期

9 徐启东;;湖南香花岭复式碱长花岗岩体侵入期次关系的识别[J];湖南地质;1991年04期

10 曹希荣;王子英;林树华;;小黑山地区碱长花岗岩构造环境探讨[J];科技信息;2013年25期

相关会议论文 前1条

1 黄明;和静;石艳娇;刘成;;内蒙古哈达营子侏罗纪晚期碱长花岗岩的地质特征[A];科技创新与经济结构调整——第七届内蒙古自治区自然科学学术年会优秀论文集[C];2012年

相关硕士学位论文 前3条

1 周毅;内蒙古西乌珠穆沁旗罕乌拉地区早二叠纪岩浆岩年代学及地球化学特征研究[D];吉林大学;2016年

2 刘斐耀;赤峰红山子岩体斑状黑云母碱长花岗岩年代学及地球化学特征[D];东华理工大学;2017年

3 田德欣;内蒙古东乌旗地区晶洞碱长花岗岩的成因及其地质意义[D];吉林大学;2015年



本文编号:2186456

资料下载
论文发表

本文链接:https://www.wllwen.com/kejilunwen/diqiudizhi/2186456.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户361ff***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com