赤峰红山子岩体斑状黑云母碱长花岗岩年代学及地球化学特征
[Abstract]:The Hongshanzi pluton is located in the Liaoyuan block south of the Xilamulun River fault and north of the Chifeng-Kaiyuan fault zone. Its lithology is mainly alkali-feldspar granite, which is an important part of the Guyuan-Hongshanzi volcanic rock uranium metallogenic belt. It is distributed in the southeastern part of the Hongshanzi volcanic subsidence basin with an area of about 290km 2. On the basis of the research results, the porphyry biotite alkali-feldspar granite of Hongshanzi intrusion is selected as the research object, and the formation age of alkali-feldspar granite is determined by LA-ICP-MS zircon U-Pb isotope dating; the petrology and geochemical analysis are carried out; the porphyry biotite alkali-feldspar granite is discussed in combination with the existing geological data and related geological background. The 206Pb/238U age of porphyritic biotite alkali-feldspar granite LA-ICP-MS zircon U-Pb isotope dating is 151.4Ma (+1.1Ma) (MSWD=0.57), which is a Late Jurassic rhyolite belonging to the Late Jurassic Xinmin Formation. Petrogeochemical data show that porphyry biotite alkali-feldspar granites are high in silicon (SiO2 = 74.26-74.94%), rich in alkali (ALK = 8.74-9.11%) and rich in potassium (K2O/Na2O = 1.29-1.35), belonging to the high potassium-calc-alkaline series; have low FeOT/MgO (12.27-14.66%, average 13.03%) and poor in aluminum (12.42-12.66%, average 12.57%), A/CNK = 0.93-0.96, poor in magnesium (0.16-0.19%, average). They are all 0.18%, poor in phosphorus (P2O5 = 0.02-0.03%, average 0.02%) and highly differentiated (DI = 92.33-92.94). The total amount of REEs (excluding Y) is high, the light and heavy REEs are obviously enriched, the fractionation of light and heavy REEs is obvious, and the fractionation of light and heavy REEs is obvious, showing a "right-dip" and a strong negative Eu anomaly. The elements Th, U, Zr, Hf and so on are deficient in high field strength elements such as Ta, Nb and P, enriched in large ion lithophilic elements Rb, K and light rare earth elements La, Ce, deficient Ba, Sr and other large ion lithophilic elements such as low Ba-Sr granite, Hongshanzi porphyry biotite alkali-feldspar granite 10 000 Ga/Al = 3.27-3.96, with an average content of 3.54 (more than 2.6), and Zr+Nb+Ce+Y content of 512.6 *10-6-642.9 *10-6, respectively. The average value is 562.1 x 10-6, greater than 350 x 10-6, larger than 350 x 10-6; in Nb vs 10000 Ga/Al, Zr vs 10000 Ga/Al, (K2O + Na2O) / Ca vs 10000 Ga/Al, (K2O + Na2O) / CaO vs Zr + Nb + Ce + Y, FeOT / MgO vs Zr + Nb + Nb + Ce + Y, FeOT / MgO vs Zr + Nb + Nb + Ce + Ce + Y, feOT / MgO vs Zr + Nb + Nb + Ce + Ce + Y, the input A type grangranite area, and the saturation temperature of zircis 814 ~834 ~837 (-A type grangrangrangranite type granite-alk-alk-type = 1 7.56-19.90 (0.5), low Ti/Y = 10.40-11.60, Ti/Zr = 2.14-2.77 (20).Nb/Ta = 12.58-12.94, average 12.76; low Mg\# (average 12.23) and low Cr (average 2.33 x 10-6), Ni (average 0.60 x 10-6), Ni (average 0.60 x 10-6, Co (average 0.57 x 10-10-6), Co (average 0.57 x 0.57 x 10-10-6, V (average 5.74 x 10-10-6). Hong-sorbitbitite porphyphyphyry biotbiotbiotbiotbiotbiotbiotite alk-granite-alk-fegranite granite-granite-granite-granite-granite-alk-granite-In the meantime, it is necessary to study the relationship between the two. In the MgO-FeOT diagram, biotite alkali-feldspar porphyry granite falls into the edge of POG region, and falls into the POG range in SiO2-Al2O3, FeOT+MgO-CaO and FeOT/(FeOT+MgO) -SiO2 diagrams. In Lg [CaO/(K2O+Na2O)]-SiO2 diagrams, the samples fall into extensional environments. In Y+Nb-Rb and Y-Nb diagrams of trace element tectonic environments, the samples fall within the range of intraplate (WPG). The above results show that porphyry biotite alkali-feldspar granites occur in extensional environments. Based on their spatiotemporal factors, porphyry biotite alkali-feldspar granites are formed. There may be a close relationship with the Mongolia-Okhotsk Sea suture zone in the north. The extensive occurrence of Late Jurassic A-type granites (rhyolite) in the southern section of the Great Hinggan Mountains indicates that the Late Jurassic has entered an extensional environment, so the Mongolia-Okhotsk Sea should be closed before the Late Jurassic.
【学位授予单位】:东华理工大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:P597.3;P588.121
【相似文献】
相关期刊论文 前10条
1 王勇;吕庆田;孟贵祥;严加永;杨岳清;赵金花;;内蒙东七一山碱长花岗岩及其成矿作用[J];地质学报;2009年10期
2 吕博;杨岳清;孟贵祥;严加永;赵金花;王守光;贾玲珑;彭润民;;内蒙古东七一山碱长花岗岩的地球化学特征和成因[J];岩石矿物学杂志;2011年03期
3 王艳丽;祝新友;刘志刚;傅其斌;;广西栗木钨锡稀有金属矿床碱长花岗岩的厘定[J];华南地质与矿产;2013年01期
4 周瑞文;钾长-碱长花岗岩与稀土铌钽成矿的关系[J];地质与勘探;1982年12期
5 廖世勇;尹福光;王冬兵;唐渊;孙志明;孙洁;;滇西“三江”地区临沧花岗岩基中三叠世碱长花岗岩的发现及其意义[J];岩石矿物学杂志;2014年01期
6 祝新友;王京彬;王艳丽;程细音;何鹏;傅其斌;李顺庭;;南岭锡钨多金属矿区碱长花岗岩的厘定及其意义[J];中国地质;2012年02期
7 傅其斌;祝新友;程细音;赵晶晶;王艳丽;;云南个旧卡房锡-铜矿床碱长花岗岩厘定及意义[J];矿物学报;2013年01期
8 章锦统,夏卫华;黄玉碱长花岗岩及其矿床[J];地质科技情报;1988年04期
9 徐启东;;湖南香花岭复式碱长花岗岩体侵入期次关系的识别[J];湖南地质;1991年04期
10 曹希荣;王子英;林树华;;小黑山地区碱长花岗岩构造环境探讨[J];科技信息;2013年25期
相关会议论文 前1条
1 黄明;和静;石艳娇;刘成;;内蒙古哈达营子侏罗纪晚期碱长花岗岩的地质特征[A];科技创新与经济结构调整——第七届内蒙古自治区自然科学学术年会优秀论文集[C];2012年
相关硕士学位论文 前3条
1 周毅;内蒙古西乌珠穆沁旗罕乌拉地区早二叠纪岩浆岩年代学及地球化学特征研究[D];吉林大学;2016年
2 刘斐耀;赤峰红山子岩体斑状黑云母碱长花岗岩年代学及地球化学特征[D];东华理工大学;2017年
3 田德欣;内蒙古东乌旗地区晶洞碱长花岗岩的成因及其地质意义[D];吉林大学;2015年
,本文编号:2186456
本文链接:https://www.wllwen.com/kejilunwen/diqiudizhi/2186456.html