基于时序InSAR的京津高铁北京段地面沉降监测
[Abstract]:Beijing-Tianjin high-speed railway is the first high-speed intercity railway in China. Land subsidence, especially uneven land subsidence, will cause deformation of some subgrade and bridge, threatening the operation safety of high-speed railway. Synthetic Aperture Radar (SAR) interferometry can be used to monitor the surface deformation in a wide range and has a good ability to monitor the land subsidence along the high-speed railway. Based on 45 high resolution Terra SAR-X data, the ground subsidence along Beijing section of Beijing-Tianjin high-speed railway is monitored by PS-In SAR technology, and the distribution information of ground subsidence along Beijing section of Beijing-Tianjin high-speed railway is obtained. In order to provide technical support for the safe operation of Beijing-Tianjin high-speed railway, the data of fault zone, geological conditions and aquifer system media are analyzed synthetically to analyze the causes of uneven land subsidence along the high-speed rail line. The results show that the land subsidence development along the Beijing section of Beijing-Tianjin high-speed railway is different in space, the annual subsidence rate is less than 10 mm / a from Beijing South Railway Station to the Shili River section, and the annual settlement rate fluctuates in the range of 10 ~ 40 mm/a to Shilidian section. To the east of Dongshi Village, the maximum annual subsidence rate is 90 mm / a, and to the west of Yonglong Village, the annual settlement is alleviated, and to the east to Tuo Dike Village, the settlement is relatively stable, and the annual settlement rate is less than 10 mm / a. Groundwater overmining is the main factor of ground subsidence along the line, and the ground subsidence along the line is controlled to some extent by the structures of the Nanyuan-Tongxian fault zone and the old palace fault zone under the combined action of dynamic and dynamic loads, and the ground subsidence along the line is controlled to a certain extent by the structure of the Nanyuan-Tongxian fault zone. The section with large settlement is located in Daxing uplift with thick clay layer.
【作者单位】: 首都师范大学水资源安全北京实验室;首都师范大学三维信息获取与应用教育部重点实验室;首都师范大学城市环境过程与数字模拟国家重点实验室培育基地;
【基金】:国家重点研发计划项目(2017YFB0503803) 国家自然科学基金项目(41201419、41671417)
【分类号】:P642.26;U238
【相似文献】
相关期刊论文 前7条
1 范兴丰;;基于InSAR的三峡地质灾害监测[J];化工之友;2006年07期
2 ;山东省人民政府关于组织实施山东省地面沉降防治规划(2012—2020年)的通知[J];山东省人民政府公报;2014年13期
3 刘斌;;InSAR高精度观测地震形变场及其三维重建技术研究[J];国际地震动态;2014年03期
4 赵超英;张勤;丁晓利;彭建兵;杨成生;;基于InSAR的西安地面沉降与地裂缝发育特征研究[J];工程地质学报;2009年03期
5 葛大庆;殷跃平;王艳;张玲;郭小方;王毅;;地面沉降-回弹及地下水位波动的InSAR长时序监测——以德州市为例[J];国土资源遥感;2014年01期
6 刘云华;汪驰升;单新建;张桂芳;屈春燕;;芦山M_s7.0级地震InSAR形变观测及震源参数反演[J];地球物理学报;2014年08期
7 陈基炜;新技术在城市地面沉降研究中的应用——遥感卫星雷达干涉测量(InSAR)[J];上海地质;2001年02期
相关会议论文 前1条
1 刘斌;张景发;;玉树地震InSAR观测及发震断层构造特征分析[A];中国地球物理学会第二十七届年会论文集[C];2011年
相关博士学位论文 前3条
1 王永哲;基于InSAR的地表同震形变获取及震源参数反演研究[D];中南大学;2012年
2 葛大庆;区域性地面沉降InSAR监测关键技术研究[D];中国地质大学(北京);2013年
3 刘斌;InSAR高精度观测地震形变场及其三维重建技术研究[D];中国地震局工程力学研究所;2013年
相关硕士学位论文 前3条
1 邵倩倩;基于InSAR时序分析技术的任丘地区形变监测研究[D];中国矿业大学;2016年
2 许丹;新疆于田地震多源InSAR观测与邻近构造断裂的运动分析[D];中国地质大学(北京);2012年
3 马翔旭;基于InSAR监测北京市地铁开发对地面沉降的影响[D];首都师范大学;2013年
,本文编号:2194287
本文链接:https://www.wllwen.com/kejilunwen/diqiudizhi/2194287.html