当前位置:主页 > 科技论文 > 地质论文 >

攀西地区钒钛磁铁矿中稀有分散元素富集规律

发布时间:2018-08-28 05:51
【摘要】:攀西地区是我国钒钛磁铁矿重要的成矿带,是我国主要的铁矿石基地之一,矿石储量占我国铁矿石总储量的百分之十五左右。攀西地区矿床中的矿石主要含有铁、钒、钛外,同时还伴生有丰富的稀有分散元素,如钪(Sc)、镓(Ga)、钴(Co)、镍(Ni)、锗(Ge)、铌(Nb)以及铂族元素(PGE)等。本文主要研究的是攀西地区的七个矿床:攀枝花、红格、白马、新街、黑古田、安宁以及太和,主要研究钒钛磁铁矿中稀有分散元素的分布以及富集规律。本论文以《攀枝花市钒钛磁铁矿中伴生稀散和贵金属资源潜力评价及开发利用关键技术研究》项目(攀国土合子[2015]70号)为依托,主要研究攀西地区钒钛磁铁矿可综合利用的伴生元素,其中包括钪(Sc)、镓(Ga)、钒(V)、铬(Cr)、钴(Co)、镍(Ni)以及铂族元素(PGE)。锗(Ge)、铟(In)、镉(Cd)由于含量很低,不具有综合利用价值。铌(Nb)、钽(Ta)矿体主要赋存于碱性岩中,与钒钛磁铁矿体空间上分离,钒钛磁铁矿矿体中铌、钽含量普遍很低,在铁矿开发利用中不具有综合利用价值。钪主要富集在辉石岩中,在铁矿石中的含量普遍很低,选矿过程中主要进入了尾矿中;镓与钪相反,主要富集在磁铁矿中,铁矿石中的含量显著高于各类岩石,在选矿过程中主要进入了铁精矿中;钒、钴与铁呈较明显的正相关关系,主要富集在铁矿石中,铁钛氧化物中的含量远高于岩石,在选矿过程中主要进入了铁精矿中;铬、镍主要富集在岩体底部偏超基性的岩(矿)石中,与铁、钛的关系不明显,各矿区含量变化很大,铁钛氧化物中的含量一般大于岩石。镍主要富集在岩体底部硫化物中。钪最富集的矿区为新街矿区,其次是红格矿区,富集的岩石类型为辉石岩;镓最富集的矿区为攀枝花矿区,富集的岩石类型为富含磁铁矿的辉长岩,铁含量越高,越富集镓;钒最富集的矿区为白马矿区,其次为攀枝花矿区,主要富集在铁矿石中;铬最富集的矿区为新街和红格矿区;钴最富集的矿区为红格矿区和攀枝花矿区,主要富集在铁矿石中;镍最富集的矿区为红格矿区,其次是白马矿区和新街矿区。在红格矿区已发现多个独立镍矿体,新街矿区镍主要赋存于岩体底部;铂族元素最富集的矿区为新街和红格矿区。在新街矿区已圈出独立铂矿体。安宁矿区除钒略高,有一定的综合利用价值外,其他元素含量很低,综合利用价值不大。黑谷田矿区研究程度很低,从现有的资料来看,除橄榄辉石岩中钪、铬和镍含量较高外,铁矿石中伴生元素的含量都不高,综合利用价值不大。本次较系统的研究了攀西地区钒钛磁铁矿中伴生的稀有分散元素以及有色金属元素的富集规律,根据收集的大量资料和本次分析测试结果,开展了综合分析研究,初步查明了红格、攀枝花、白马、新街、黑古田等矿区稀有分散元素分布的基本特征;明确了哪些矿区、哪类岩石和矿石中有何种稀有分散元素,哪些矿区稀有分散元素最富集、最具有综合利用价值;优选出了最具有开发价值的元素种类和潜力最大的矿区。
[Abstract]:Panxi area is an important metallogenic belt of V-Ti magnetite and one of the main iron ore bases in China. The ore reserves account for about 15% of the total iron ore reserves in China. Ge, Nb, PGE and so on. This paper mainly studies seven deposits in Panxi area: Panzhihua, Hongge, Baima, Xinjie, Heigutian, Anning and Taihe. It mainly studies the distribution and enrichment of rare dispersed elements in vanadium-titanium magnetite. Relying on the key technology research project of resource potential evaluation and development and utilization (Panzhizi [2015] 70), the associated elements of vanadium-titanomagnetite in Panxi area, including scandium (Sc), gallium (Ga), vanadium (V), chromium (Cr), cobalt (Co), nickel (Ni) and platinum group elements (PGE), germanium (Ge), indium (In), cadmium (Cd), are mainly studied, which are not available because of their low content. Nb and Ta ore bodies are mainly hosted in alkaline rocks and separated from V-Ti magnetite bodies in space. The contents of Nb and Ta in V-Ti magnetite ore bodies are generally very low, and have no comprehensive utilization value in iron ore development and utilization. Ga and Sc in tailings, contrary, mainly concentrated in magnetite, iron ore content is significantly higher than all types of rocks, mainly into iron concentrate in the process of mineral processing; Vanadium, cobalt and iron have a more obvious positive correlation, mainly concentrated in iron ore, iron and titanium oxide content is much higher than rock, mainly into the mineral processing process. In the iron concentrate, chromium and nickel are mainly concentrated in ultrabasic rocks (ores) at the bottom of the rock mass, but their relationship with iron and titanium is not obvious. The content of iron and titanium oxides varies greatly in each mining area. Nickel is mainly concentrated in sulfides at the bottom of the rock mass. Pyroxene is the most abundant type of gallium; Panzhihua ore district is the most abundant type of gallium; gabbro rich in magnetite is the most abundant type of rock, the higher the iron content, the more abundant gallium; Baima ore district is the most abundant vanadium, followed by Panzhihua ore district, mainly concentrated in iron ore; Xinjie and Hongge ore district is the most abundant chromium; and cobalt ore is the most abundant. Hongge ore district and Panzhihua ore district are mainly enriched in iron ore, Hongge ore district is the most nickel-rich mining area, followed by Baima mine district and Xinjie mine district. Independent platinum ore bodies have been circled. The content of other elements in Anning mining area is very low except for vanadium which is slightly high and has certain comprehensive utilization value. The research degree in Heigutian mining area is very low. The enrichment regularity of rare dispersed elements and non-ferrous metals associated with vanadium-titanium magnetite in Panxi area has been studied systematically in this paper. Based on a large amount of data collected and the results of this analysis and test, a comprehensive analysis has been carried out. The rare dispersed elements in Hongge, Panzhihua, Baima, Xinjie, Heigutian and other mining areas have been preliminarily identified. The basic characteristics of element distribution, which mining areas, which types of rocks and ores have what kind of rare dispersed elements, which mining areas have the most enriched rare dispersed elements and the most comprehensive utilization value, have been identified.
【学位授予单位】:成都理工大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:P618.31

【参考文献】

相关期刊论文 前10条

1 郑文勤;邓宇峰;宋谢炎;陈列锰;于宋月;周国富;刘世荣;向建新;;攀枝花岩体钛铁矿成分特征及其成因意义[J];岩石学报;2014年05期

2 佘宇伟;宋谢炎;于宋月;陈列锰;魏宇;郑文勤;;磁铁矿和钛铁矿成分对四川太和富磷灰石钒钛磁铁矿床成因的约束[J];岩石学报;2014年05期

3 陈列锰;易俊年;宋谢炎;于宋月;佘宇伟;颉炜;栾燕;向建新;;峨眉山大火成岩省内带黑谷田含钒钛磁铁矿层状岩体成因[J];岩石学报;2014年05期

4 李晓琴;;攀枝花地区矿产综合利用现状与发展探讨[J];中国资源综合利用;2013年08期

5 肖亮;杨勇攀;;攀枝花市有色及稀贵金属产业发展思路及重点初讨[J];特区经济;2012年03期

6 钟宏;朱维光;漆亮;周美夫;宋谢炎;张贻;;攀西地区峨眉山玄武岩的铂族元素地球化学特征[J];科学通报;2006年11期

7 周美夫;攀西地区层状辉长岩体及钒钛磁铁矿床的成因(英文)[J];岩石矿物学杂志;2005年05期

8 张乾;朱笑青;高振敏;潘家永;;中国分散元素富集与成矿研究新进展[J];矿物岩石地球化学通报;2005年04期

9 顾雪祥,王乾,付绍洪,唐菊兴;分散元素超常富集的资源与环境效应:研究现状与发展趋势[J];成都理工大学学报(自然科学版);2004年01期

10 温春齐;曹志敏;罗小军;霍艳;;攀枝花铁矿床稀土元素特征[J];矿床地质;2002年S1期

相关博士学位论文 前3条

1 徐争启;攀枝花钒钛磁铁矿区重金属元素地球化学特征[D];成都理工大学;2009年

2 李佑国;基于“3S”技术的攀西地区铜镍铂族元素矿床找矿靶区筛选[D];成都理工大学;2007年

3 郑建斌;峨眉山玄武岩PGE富集机理——兼论陆海玄武岩PGE成矿作用差异[D];中国海洋大学;2004年

相关硕士学位论文 前5条

1 何益;攀枝花层状岩体钪的地球化学特征及富集规律[D];成都理工大学;2016年

2 任鹏;陕西省典型铅锌矿床中分散元素的赋存状态和富集机制[D];长安大学;2013年

3 赵伟;四川省红格钒钛磁铁矿床地质地球化学特征[D];成都理工大学;2013年

4 凌超发;GIS支持下的攀西地区铂族元素(PGE)成矿地质条件分析与成矿预测[D];成都理工大学;2003年

5 罗小军;攀枝花钒钛磁铁矿矿床韵律层特征及其研究意义[D];成都理工大学;2003年



本文编号:2208428

资料下载
论文发表

本文链接:https://www.wllwen.com/kejilunwen/diqiudizhi/2208428.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户95766***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com