当前位置:主页 > 科技论文 > 地质论文 >

肥城市地下水水化学特征分析研究

发布时间:2018-10-08 12:16
【摘要】:肥城市作为泰安市重要的工业区,近年来工农业用水总量不断增加,存在地下水过量开采、水环境恶化等环境水文地质问题。本文在系统分析地下水长期实测数据基础上,以肥城市地下水水化学成分为研究对象,结合研究区水文地质条件及地下水历史资料,运用地下水质量评价、水文地质学及水文地球化学等方法,对研究区水化学特征及其时空分布规律、水化学特征形成机制及水文地球化学过程,进行了研究,形成了阶段性成果,得出以下结论:(1)基于Hydro GeoAnalyst建立了肥城市地下水管理信息系统,将搜集到的近30年来的大量数据输入系统中,实现了地下水数据的存储、管理、维护、查询、分析以及可视化等功能。(2)选取pH、Cl~-、SO_4~(2-)、TDS、总硬度、NO_3~-、高锰酸盐指数和F-等8项指标,采用F值评分法进行对地下水质量评价。地下水水质较差区水主要分布在研究区内西北部石横镇以及径流排泄区王庄镇,在南部的汶阳平原水质较为良好。(3)研究区内地下水化学类型以HCO_3~-Ca型水和HCO_3~-Ca·Mg型水为主,水化学成分不断发生改变,地下水中SO_4~(2-)以及Cl~-占比不断上升,主要水化学类型已转变成为HCO3·SO4-Ca·Mg型水为主,占比64.29%,其中还含有HCO3·SO4·Cl~-Ca·Mg型水以及HCO3·Cl~-Ca·Mg型水,主要阴离子由HCO_3~-向SO_4~(2-)和Cl~-离子偏移,TDS及总硬度呈明显增大趋势。(4)研究区内地下水水化学主要成分在空间分布及变化规律符合传统意义上的地下水中离子含量从补给区经径流区到排泄区越来越高的分布特征,TDS大致由研究区东北部向研究区西南部及地下水径流排泄区出口逐渐增高。但值得注意的是肥城市北部实则是地下水补给区,但也发生了多项离子浓度过高的情况,该区域主要是肥城的工业区以及煤矿开采区,说明人类活动强度对地下水水化学成分的影响在逐渐增加。(5)通过水文地质学、水文地球化学及数理统计方法,利用Gibbs图和离子比例系数等方法作图分析形成肥城市地下水水化学特征的主要水文地球化学过程,显示方解石、白云石以及石膏的溶滤作用是引起研究区内地下水水化学成分变化的主要作用,同时存在有少部分的盐岩溶解及阳离子交替吸附溶滤作用,使得地下水中Na+、K+离子减少,Ca2+、Mg2+增加。人类活动造成含水层结构的变化和工农业生产废水以及城市生活污水也是地下水成分变化的重要因素。
[Abstract]:Feicheng City is an important industrial area in Taian City. In recent years, the total amount of water used in industry and agriculture has been increasing, and there are some environmental hydrogeological problems such as over-exploitation of groundwater and deterioration of water environment. On the basis of systematic analysis of long-term measured groundwater data, this paper takes the chemical composition of groundwater in Feicheng City as the research object, combines the hydrogeological conditions and historical data of groundwater in the study area, and applies the evaluation of groundwater quality. Hydrogeology, hydrogeochemistry and other methods are used to study the hydrochemistry characteristics and their spatiotemporal distribution, hydrochemical characteristics formation mechanism and hydrogeochemical process in the study area. The main conclusions are as follows: (1) based on Hydro GeoAnalyst, the groundwater management information system of Feicheng City is established, and a large number of data collected in the past 30 years are input into the system to realize the storage, management, maintenance and query of groundwater data. (2) pH,Cl~-,SO_4~ (2-) TDs, total hardness, permanganate index and F- were selected to evaluate groundwater quality. The groundwater in the poor groundwater area is mainly distributed in Shiheng Town in the northwest of the study area and Wangzhuang Town in the runoff discharge area, and the water quality is relatively good in the southern Wenyang Plain. (3) the chemical types of groundwater in the study area are mainly HCO_3~-Ca type water and HCO_3~-Ca Mg type water. The chemical composition of water changed continuously, and the proportion of SO_4~ (2-) and Cl~- in groundwater increased continuously. The main types of hydrochemistry had been changed to HCO3 SO4-Ca Mg type water, accounting for 64.29%, which also contained HCO3 SO4 Cl~-Ca Mg type water and HCO3 Cl~-Ca Mg type water. The shift of the main anions from HCO_3~- to SO_4~ (2-) and Cl~- ions, TDs and total hardness showed an obvious increasing trend. (4) the spatial distribution and variation of the main chemical components of groundwater in the study area were in accordance with the traditional groundwater ion content compensation. The distribution of TDs is increasing from the northeast of the study area to the southwest of the study area and the outlet of the groundwater runoff discharge area. However, it is worth noting that the northern part of Feicheng City is actually a groundwater recharge area, but there have also been many cases of excessive ion concentration. This area is mainly an industrial area in Feicheng City and a coal mining area. It shows that the influence of human activity intensity on the chemical composition of groundwater is increasing gradually. (5) through hydrogeological, hydrogeochemical and mathematical statistical methods, The main hydrogeochemical processes forming the hydrochemical characteristics of groundwater in Feicheng City were analyzed by using Gibbs diagram and ion ratio coefficient, which showed calcite. The dissolution and filtration of dolomite and gypsum are the main factors that cause the change of the chemical composition of groundwater in the study area. At the same time, there are a few salt rock dissolving and cation alternate adsorption leaching. The increase of Ca 2 + mg 2 in groundwater can be reduced by Na K ion. The changes of aquifer structure caused by human activities, industrial and agricultural wastewater and municipal sewage are also important factors for the change of groundwater composition.
【学位授予单位】:济南大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:P641.12

【参考文献】

相关期刊论文 前10条

1 孙为奕;吴勇;卓勇;田梦莎;贺密;;巴中市恩阳镇地区浅层地下水水文地球化学特征分析[J];科学技术与工程;2016年27期

2 孙佳玮;郑西来;张博;;大沽河地下水源地信息管理系统的构建和应用[J];地下水;2016年05期

3 彭聪;何江涛;廖磊;张振国;;应用水化学方法识别人类活动对地下水水质影响程度:以柳江盆地为例[J];地学前缘;2017年01期

4 陈盟;吴勇;高东东;常鸣;;广汉市平原区浅层地下水化学演化及其控制因素[J];吉林大学学报(地球科学版);2016年03期

5 党慧慧;董军;岳宁;董阳;郭映;魏国孝;;贺兰山以北乌兰布和沙漠地下水水化学特征演化规律研究[J];冰川冻土;2015年03期

6 崔素芳;张保祥;范明元;魏晓燕;张吉圣;刘冬梅;吴泉源;刘杰;;肥城盆地地下水水化学演变规律研究[J];人民黄河;2015年03期

7 刘博;肖长来;梁秀娟;张静;盛红勋;;吉林市城区浅层地下水污染源识别及空间分布[J];中国环境科学;2015年02期

8 陈然;郑西来;;大沽河地下咸淡水过渡带的水-岩作用模拟[J];中国海洋大学学报(自然科学版);2015年01期

9 魏晓燕;张保祥;李旺林;;GW-Base地下水管理系统软件的应用[J];地下水;2014年03期

10 王晓曦;王文科;王周锋;赵佳莉;谢海澜;王小丹;;滦河下游河水及沿岸地下水水化学特征及其形成作用[J];水文地质工程地质;2014年01期

相关硕士学位论文 前8条

1 乔雨;吉林省中部高平原区地下水时空演化特征研究[D];吉林大学;2016年

2 储婷婷;潘谢矿区地下水常规水化学分析及判别模型的建立[D];中国科学技术大学;2014年

3 魏晓燕;肥城盆地地下水动态数值模拟研究[D];济南大学;2014年

4 赵爱芳;天山托木尔峰青冰滩72号冰川径流水化学特征研究[D];西北师范大学;2013年

5 蒋秀华;地下水信息管理系统的设计与开发[D];河海大学;2006年

6 张兆强;肥城矿区地下水环境质量评价[D];山东科技大学;2004年

7 孙熠;关中盆地浅层地下水水化学场演化及其相关环境问题研究[D];长安大学;2003年

8 冯建国;地下水水化学分类研究[D];长安大学;2003年



本文编号:2256715

资料下载
论文发表

本文链接:https://www.wllwen.com/kejilunwen/diqiudizhi/2256715.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户08f69***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com