基于统计参数的二维节理粗糙度系数非线性确定方法
[Abstract]:There is a complex nonlinear relationship between rock joint roughness coefficient JRC and its statistical parameters. Because of the one-sidedness of the single statistical parameter describing the morphology of the structural plane, the reliability of the JRC calculation results is low. From the angle of fluctuation angle, height and distribution of structure surface, four parameters, mean relative fluctuation degree H / L, standard deviation of fluctuation angle iSD and standard deviation of fluctuation height hSD, are selected to reflect the morphology of structure surface. The support vector machine (SVM) is trained with 102 structural plane profiles of known inverse value of JRC test as sample data. The nonlinear mapping relationship between JRC and selected statistical parameters is constructed, and the JRC support vector regression (SVR) prediction model is established. The reliability of the model is proved by comparing the JRC prediction value of Barton standard profile with the experimental backcalculation value. Taking the stratum rock mass structure plane of Majiagou landslide in Zigui County of the three Gorges Reservoir area as an example, the surface topography data were obtained based on the 3D laser scanning test and the three-dimensional topography model was established. The JRC. was obtained by using the indoor direct shear test. The calculation results of JRC show that the relative error between the prediction result of SVR model and the back calculation value of the experiment is only 4.5, and there are great differences between the different regression equations of statistical parameters and the estimation results of the same profile line. It shows that the JRC predicted by SVR model is more reliable based on the selected statistical parameters. This method provides a new idea for quantitative determination of JRC.
【作者单位】: 中国地质大学(武汉)工程学院;
【基金】:国家自然科学基金资助项目(No.41372310) 中国博士后基金项目(No.2015M570671) 中国地质大学(武汉)中央高校基本科研业务费专项资金资助项目(No.1610491T07)~~
【分类号】:TU45
【相似文献】
相关期刊论文 前10条
1 韩玉梅;沈必成;李颖;;黑龙江省暴雨统计参数地区分布初探[J];黑龙江水利科技;2009年03期
2 杨建昆;;由子集统计参数求全集统计参数的进一步公式推导及程序设计[J];物探化探计算技术;1993年02期
3 陈干琴;刘炳忠;宋秀英;刘群;李琨;;山东省点暴雨统计参数空间分布及影响因素分析[J];水文;2011年01期
4 程兆年,朱文玉,王渭源;七种离子注入砷化镓的射程统计参数计算[J];物理学报;1982年07期
5 陶镇钧;金光炎;马登宝;邓集贤;徐德群;;用“极大似然法”估计频率曲线的统计参数[J];人民长江;1959年01期
6 任伯帜,廖继源;确定皮尔逊-Ⅲ型分布统计参数的方法研究及其应用[J];湘潭矿业学院学报;2000年03期
7 沈勐;;由子集统计参数求全集统计参数的程序设计[J];物化探计算技术;1987年01期
8 杨智硕;陈明霞;;福建省城市短历时暴雨P-Ⅲ分布统计参数分布规律研究[J];湖南工业大学学报;2010年05期
9 柏绍光,傅骅;P-III型曲线统计参数约束问题[J];人民长江;2000年06期
10 张是勉;统计参数估值方法在检测中应用[J];中国科学技术大学学报;1991年02期
相关会议论文 前1条
1 陈干琴;刘炳忠;宋秀英;刘群;;山东省点暴雨量多年统计特征分析[A];中国水利学会2010学术年会论文集(上册)[C];2010年
相关博士学位论文 前1条
1 许敏强;基于话者统计特征和SVM的文本无关话者确认研究[D];中国科学技术大学;2011年
相关硕士学位论文 前1条
1 王新东;IPv6网络状况分析与地址统计[D];吉林大学;2007年
,本文编号:2337671
本文链接:https://www.wllwen.com/kejilunwen/diqiudizhi/2337671.html