山西省黄土崩塌地质灾害的现状及水敏感性分析
[Abstract]:Taking the loess collapse disaster of Shanxi Province as an example, it is concluded that the geological environment in Shanxi province is complicated and the loess geological hazard has many kinds, The distribution is wide and the frequency is high, in which the collapse is the main and the number of collapse accounts for more than 73% of the total number of geological disasters in the loess area. and with the development of Shanxi's economy, the impact of human activities on the geological disasters is becoming more and more serious; in addition to the geological disasters that have taken place, a large number of potential hidden danger points of the loess collapse in Shanxi are also existed, The hidden danger of these disasters poses a great threat to the lives and property of the people. 2. The occurrence of loess collapse is the result of the comprehensive effect of various factors, including the self-factors of loess soil and the external trigger factors. Among them, the external trigger factors of loess collapse are rainfall, soil freeze-thaw, groundwater erosion, river erosion, human activities and biological activities. The effect of rainfall and freeze-thaw on the collapse of loess is the most serious. In the early stage of the disaster, the water content of the soil is rapidly increased, the shear strength of the soil is continuously reduced, and the self-weight is continuously increased, and the shear strength between the soil bodies is not sufficient to maintain the self-gravity and the soil mass can fall, And the collapse hazard is formed. In view of the water sensitivity analysis of the collapse of the loess, the field sampling is carried out on the disaster points of three geological disasters, namely, Jixian, Yongand and Linxian, and the experimental results of the shear strength of the indoor direct shear under different water content are carried out on the original undisturbed soil samples. The relationship between the cohesive force and internal friction angle of the soil and the water content were analyzed. The results show that the experimental rules of the soil samples in Jixian and Yongand two counties are similar, and the results show that the shear strength of the loess reaches the maximum in the limit water content, and the water content of the two counties is respectively (17-2.00)% and (15-2.00)% respectively. In the event of collapse, the water content of soil is much higher than the water content of this limit, and the shear strength decreases sharply with the increase of water content. The water content of this limit can be used as the early warning value of the disaster area. The experimental results of Linxian County are as follows: the experimental law of Jixian and Yonghe is different, and the shear strength decreases with the increase of the water content, and the difference is that the water content in the natural state of the loess in Linxian is low and the porosity is large, which is the large-pore loess of the support. The strength of the soil skeleton is less than that of the structural strength, and the structural strength depends on the properties of the interparticle bond and the crystal structure. The soluble salts and some of the organic matter in these materials can be dissolved in water, and the cement and the crystal structure in the loess are broken and the cohesion is lost; and the water content of the permanent and loess in the Jixian County is high, the void rate is low, and the strength is mainly determined by the cementation effect between the strength of the skeleton and the particles, When the water content of the soil is very low, the bonding force between the soil and the soil can not fully play its role, and the cohesive force of the soil is low; and as the water content is increasing, the binding force of the soil is increased, and the cohesive force of the soil is increased.
【学位授予单位】:太原理工大学
【学位级别】:硕士
【学位授予年份】:2016
【分类号】:P642.21
【相似文献】
相关期刊论文 前10条
1 吴子荣;;黄土与气候[J];第四纪研究;1989年02期
2 景可;黄土与黄土高原[J];大自然;2005年01期
3 卞敬玲;高原黄土动力特征研究[J];青海师范大学学报(自然科学版);2002年03期
4 李书庆;;静宁地区的黄土[J];西北地质;1975年04期
5 岳乐平;染色有机玻璃黄土结构薄片制作方法[J];西北大学学报(自然科学版);1978年03期
6 刘祖典;李靖;;黄土的物理力学性质和变形特性[J];第四纪研究;1986年01期
7 李晓辉;杜艳霞;李广;;关中地区黄土的动力性质[J];地球与环境;2005年S1期
8 王朝阳;倪万魁;蒲毅彬;;三轴剪切条件下黄土结构特征变化细观试验[J];西安科技大学学报;2006年01期
9 袁中夏,王兰民,邓津;电镜图像在黄土结构性研究中应用的几个问题(英文)[J];西北地震学报;2005年02期
10 李兰,王兰民,刘旭;极震区黄土微结构的试验研究[J];中国地震;2005年03期
相关会议论文 前9条
1 刘祖典;郭增玉;陈正汉;;陕西黄土的变形特性[A];中国土木工程学会第四届土力学及基础工程学术会议论文选集[C];1983年
2 刘祖典;郭增玉;;黄土的工程地质特征及分类命名[A];岩石力学新进展与西部开发中的岩土工程问题——中国岩石力学与工程学会第七次学术大会论文集[C];2002年
3 李晓辉;杜艳霞;李广;;关中地区黄土的动力性质[A];中国地质学会工程地质专业委员会、贵州省岩石力学与工程学会2005年学术年会暨“岩溶·工程·环境”学术论坛论文集[C];2005年
4 田堪良;张慧莉;骆亚生;张伯平;罗碧玉;;黄土的结构强度及其定量分析方法[A];岩石力学新进展与西部开发中的岩土工程问题——中国岩石力学与工程学会第七次学术大会论文集[C];2002年
5 邓洪亮;谢向文;郭玉松;尹金宽;;黄土浸水破坏机理研究[A];第14届全国结构工程学术会议论文集(第二册)[C];2005年
6 石坚;李敏;贺建辉;王毅红;;黄土的弹塑性帽盖模型[A];第14届全国结构工程学术会议论文集(第二册)[C];2005年
7 夏旺民;郭增玉;;黄土弹塑性损伤本构模型[A];第三届全国岩土与工程学术大会论文集[C];2009年
8 楚华栋;裴章勤;马周全;熊志文;魏佳中;;黄土的工程特性、筑路技术和病害处理[A];中国铁道工程地质世纪成就论文集[C];2005年
9 王存玉;;某工程黄土的工程地质性质及自稳能力研究[A];第五届全国工程地质大会文集[C];1996年
相关博士学位论文 前10条
1 程大伟;单变量黄土结构势参数及其与增湿变形系数、振陷系数关系研究[D];西北农林科技大学;2014年
2 夏旺民;黄土弹塑性损伤本构模型及工程应用研究[D];西安理工大学;2005年
3 马栋和;黄土公路边坡坡面冲刷的水—土力学耦合机制及模型研究[D];吉林大学;2012年
4 姚涛;基于三轴土样变形数字图像测量的黄土变形和强度研究[D];大连理工大学;2008年
5 林斌;考虑损伤效应的黄土流变模型研究[D];长安大学;2005年
6 李宏儒;结构性黄土破损变形发展演化特性的研究[D];西安理工大学;2009年
7 何青峰;延安Q_2黄土的力学及流变特性研究[D];长安大学;2008年
8 刘海松;考虑沉积环境和应力历史的黄土力学特性研究[D];长安大学;2008年
9 邓津;黄土微观结构的区域成土环境与震害机理研究[D];兰州大学;2009年
10 胡再强;黄土结构性模型及黄土渠道的浸水变形试验与数值分析[D];西安理工大学;2000年
相关硕士学位论文 前10条
1 杨朝旭;压实黄土强度和变形各向异性试验研究[D];西安建筑科技大学;2015年
2 赵亚楠;基于损伤理论的黄土及黄土边坡渐进破坏研究[D];西北农林科技大学;2015年
3 吕萌;山西省黄土崩塌地质灾害的现状及水敏感性分析[D];太原理工大学;2016年
4 李小波;黄土暗穴对公路的危害及其致灾机理研究[D];长安大学;2004年
5 袁仁爱;铜延一级公路黄土滑坡稳定性分析与评价[D];西安科技大学;2006年
6 郭靖;中国典型黄土结构性试验研究[D];西北农林科技大学;2009年
7 杨重存;黄土固化技术在公路工程中的应用及试验研究[D];长安大学;2000年
8 骆亚生;中国典型黄土动力特性及其参数的试验分析[D];西安理工大学;2000年
9 李滨;晋西黄土暗穴成因及其对公路危害研究[D];长安大学;2006年
10 胡仲有;不同地区黄土的动力特性及其结构性研究[D];西北农林科技大学;2008年
,本文编号:2438964
本文链接:https://www.wllwen.com/kejilunwen/diqiudizhi/2438964.html