当前位置:主页 > 科技论文 > 测绘论文 >

基于BP神经网络和拓扑参数的道路网选取研究

发布时间:2018-01-03 12:25

  本文关键词:基于BP神经网络和拓扑参数的道路网选取研究 出处:《测绘科学技术学报》2016年03期  论文类型:期刊论文


  更多相关文章: 道路网 制图综合 BP神经网络 拓扑参数 智能选取


【摘要】:道路网选取是自动制图综合的重点和难点之一,运用智能化方法实现选取是当前研究的热点。BP神经网络具有强大的非线性映射能力,可以模仿人脑机能,通过对样本的学习和训练实现自动选取;结合拓扑参数,可以使选取结果很好地保持原道路网的连通性和整体结构特征。因此,提出一种基于BP神经网络和拓扑参数的道路网选取方法。首先选择训练样本并计算其拓扑参数;然后设计BP神经网络的结构,利用训练样本进行训练,找出最佳网络结构;最后选取不同特征的道路网进行实验,将选取结果与专家选取的结果进行对比分析,评价了该方法的优势与不足,并指出了下一步的改进方向。
[Abstract]:Road network selection is one of the key and difficult points in automatic cartographic generalization. Using intelligent method to realize selection is a hot topic in current research. BP neural network has powerful nonlinear mapping ability and can imitate the function of human brain. Through the study and training of the samples, the automatic selection is realized. Combined with topological parameters, the selection results can keep the connectivity and overall structural characteristics of the original road network very well. A road network selection method based on BP neural network and topological parameters is proposed. Firstly, the training samples are selected and their topological parameters are calculated. Then the structure of BP neural network is designed and the best network structure is found by using training samples. Finally, the road network with different characteristics is selected for experiments. The results are compared with those of experts, the advantages and disadvantages of the method are evaluated, and the next improvement direction is pointed out.
【作者单位】: 南京大学地理信息科学系;南京师范大学虚拟地理环境教育部重点实验室;南京师范大学地理科学学院;
【基金】:国家自然科学基金项目(41371433)
【分类号】:P283.7
【正文快照】: 道路是地图上重要的地物,道路网选取是地图自动综合研究的重点和难点之一[1-2],也是至今没有完全解决的问题,众多地图学者做了大量研究[3-6]。究其原因,道路网比较复杂,需要考虑的因素和指标比较多,而且这些指标与道路重要性的关系比较模糊,没有明确的数学模型和公式描述,这就

【相似文献】

相关期刊论文 前10条

1 刘彩红;唐万梅;;基于组合神经网络的教师评价模型研究[J];重庆师范大学学报(自然科学版);2008年04期

2 钟义信;;神经网络:成就、问题与前景[J];科学;1992年02期

3 莫恭佑;;神经网络及其在英国的应用[J];国际科技交流;1992年03期

4 闵志;;神经网络:使计算机具有快速学习功能[J];国际科技交流;1992年03期

5 冯建峰,钱敏平;神经网络中的退火——非时齐情形[J];北京大学学报(自然科学版);1993年03期

6 唐功友;离散Hopfield神经网络的稳定性[J];青岛海洋大学学报;1994年S2期

7 靳蕃;;中国神经网络学术大会在西南交通大学隆重召开[J];学术动态报道;1996年04期

8 彭宏,张素;带有时滞的神经网络的稳定性[J];杭州大学学报(自然科学版);1997年04期

9 陈新,孙道恒,黄洪钟;结构分析有限元系统与神经网络[J];起重运输机械;1999年06期

10 成宇;神经网络是怎么搭建的?[J];百科知识;2005年16期

相关会议论文 前10条

1 徐春玉;;基于泛集的神经网络的混沌性[A];1996中国控制与决策学术年会论文集[C];1996年

2 周树德;王岩;孙增圻;孙富春;;量子神经网络[A];2003年中国智能自动化会议论文集(上册)[C];2003年

3 罗山;张琳;范文新;;基于神经网络和简单规划的识别融合算法[A];2009系统仿真技术及其应用学术会议论文集[C];2009年

4 郭爱克;马尽文;丁康;;序言(二)[A];1999年中国神经网络与信号处理学术会议论文集[C];1999年

5 钟义信;;知识论:神经网络的新机遇——纪念中国神经网络10周年[A];1999年中国神经网络与信号处理学术会议论文集[C];1999年

6 许进;保铮;;神经网络与图论[A];1999年中国神经网络与信号处理学术会议论文集[C];1999年

7 金龙;朱诗武;赵成志;陈宁;;数值预报产品的神经网络释用预报应用[A];1999年中国神经网络与信号处理学术会议论文集[C];1999年

8 田金亭;;神经网络在中学生创造力评估中的应用[A];第十二届全国心理学学术大会论文摘要集[C];2009年

9 唐墨;王科俊;;自发展神经网络的混沌特性研究[A];2009年中国智能自动化会议论文集(第七分册)[南京理工大学学报(增刊)][C];2009年

10 张广远;万强;曹海源;田方涛;;基于遗传算法优化神经网络的故障诊断方法研究[A];第十二届全国设备故障诊断学术会议论文集[C];2010年

相关重要报纸文章 前10条

1 美国明尼苏达大学社会学博士 密西西比州立大学国家战略规划与分析研究中心资深助理研究员 陈心想;维护好创新的“神经网络硬件”[N];中国教师报;2014年

2 卢业忠;脑控电脑 惊世骇俗[N];计算机世界;2001年

3 葛一鸣 路边文;人工神经网络将大显身手[N];中国纺织报;2003年

4 中国科技大学计算机系 邢方亮;神经网络挑战人类大脑[N];计算机世界;2003年

5 记者 孙刚;“神经网络”:打开复杂工艺“黑箱”[N];解放日报;2007年

6 本报记者 刘霞;美用DNA制造出首个人造神经网络[N];科技日报;2011年

7 健康时报特约记者  张献怀;干细胞移植:修复受损的神经网络[N];健康时报;2006年

8 刘力;我半导体神经网络技术及应用研究达国际先进水平[N];中国电子报;2001年

9 ;神经网络和模糊逻辑[N];世界金属导报;2002年

10 邹丽梅 陈耀群;江苏科大神经网络应用研究通过鉴定[N];中国船舶报;2006年

相关博士学位论文 前10条

1 杨旭华;神经网络及其在控制中的应用研究[D];浙江大学;2004年

2 李素芳;基于神经网络的无线通信算法研究[D];山东大学;2015年

3 石艳超;忆阻神经网络的混沌性及几类时滞神经网络的同步研究[D];电子科技大学;2014年

4 王新迎;基于随机映射神经网络的多元时间序列预测方法研究[D];大连理工大学;2015年

5 付爱民;极速学习机的训练残差、稳定性及泛化能力研究[D];中国农业大学;2015年

6 李辉;基于粒计算的神经网络及集成方法研究[D];中国矿业大学;2015年

7 王卫苹;复杂网络几类同步控制策略研究及稳定性分析[D];北京邮电大学;2015年

8 张海军;基于云计算的神经网络并行实现及其学习方法研究[D];华南理工大学;2015年

9 李艳晴;风速时间序列预测算法研究[D];北京科技大学;2016年

10 陈辉;多维超精密定位系统建模与控制关键技术研究[D];东南大学;2015年

相关硕士学位论文 前10条

1 章颖;混合不确定性模块化神经网络与高校效益预测的研究[D];华南理工大学;2015年

2 贾文静;基于改进型神经网络的风力发电系统预测及控制研究[D];燕山大学;2015年

3 李慧芳;基于忆阻器的涡卷混沌系统及其电路仿真[D];西南大学;2015年

4 陈彦至;神经网络降维算法研究与应用[D];华南理工大学;2015年

5 董哲康;基于忆阻器的组合电路及神经网络研究[D];西南大学;2015年

6 武创举;基于神经网络的遥感图像分类研究[D];昆明理工大学;2015年

7 李志杰;基于神经网络的上证指数预测研究[D];华南理工大学;2015年

8 陈少吉;基于神经网络血压预测研究与系统实现[D];华南理工大学;2015年

9 张韬;几类时滞神经网络稳定性分析[D];渤海大学;2015年

10 邵雪莹;几类时滞不确定神经网络的稳定性分析[D];渤海大学;2015年



本文编号:1373875

资料下载
论文发表

本文链接:https://www.wllwen.com/kejilunwen/dizhicehuilunwen/1373875.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户6d3aa***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com