当前位置:主页 > 科技论文 > 测绘论文 >

徽派建筑构件点云的曲面重构研究

发布时间:2018-05-02 14:42

  本文选题:点云 + 预处理 ; 参考:《安徽建筑大学》2017年硕士论文


【摘要】:曲面重构技术在逆向工程、机器视觉、虚拟现实VR(Virtual Reality)、现代医疗等多个领域中被广泛使用。随着三维激光扫描技术的飞速发展和日益成熟,可通过三维激光扫描技术来获取古建筑物表面高密度的三维点云数据信息,再通过后期的分割优化、滤波去噪、法线计算、曲面重构等操作完成对点云数据的三维建模。由于支持曲面重构的软件多存在操作复杂、交互定义过多、对输入数据要求过于严苛等问题至今未得到广泛推广。然而,对古建筑进行三维建模的通常做法是前期通过人工测量得到建筑物中各个构件的具体物理参数,后期再借助三维建模软件等方式进行描绘、贴图等,最终效果不够真实且误差较大。通过对徽派建筑中大小构件进行考察,本课题最终选用了徽派建筑所特有的穿斗抬梁式木构架、门楼和栏杆作为研究对象从而展开研究。论文围绕徽派建筑构件点云的曲面重构系统研究主要探讨了以下三方面问题:第一,点云数据预处理工作。论文以徽派建筑所特有的穿斗抬梁式木构架为例,对其进行多站点扫描获得原始点云数据。首先,通过改进的迭代最近点算法(简称ICP算法,Iterative Closet Point)对多站点云数据进行配准拼接,获得整栋建筑物点云数据;其次,对配准后点云数据使用随机采样一致性算法进行分割优化,获得梁柱点云数据;最后,利用体素网格化法对梁柱点云数据中离群点进行采样,再通过滤波器Statistical OutlierRemoval对离群点进行剔除操作。第二,基于预处理后点云数据的曲面重构。通过使用最小二乘法对预处理后点云数据进行直接地法线估计推断,得到梁柱点云数据中每一点的法线及其正负向。借助点云库PCL(Point Cloud Library)开源平台,分别使用贪婪投影三角化算法、BallPivoting算法以及泊松算法对经过预处理且具有法线的梁柱点云数据进行曲面重构并同时给出了核心算法步骤,最终得到每种算法相对应的效果图及参数信息。第三,曲面重构结果对比。通过对比三种算法在同一构件点云条件下的曲面重构效果图以及网格面数、网格顶点数、孔洞数、耗时等参数信息,结果表明泊松算法最终效果图要明显优于其它两种方法,尤其是最终结果中没有孔洞出现,这对于曲面重构最终三维模型的完整性输出至关重要。以上研究借助三维激光扫描技术获取被测对象的点云原始数据,通过多边形网格化等技术实现点云数据的分割、滤波、法线估计等预处理操作,最终建立基于泊松算法的徽派建筑构件点云数据曲面重构模型。文中所提曲面重构整套研究方案为三维建模技术在建筑中的应用尤其是在古建筑复建、数字化等领域中提供了新的研究思路。
[Abstract]:Surface reconstruction is widely used in many fields such as reverse engineering, machine vision, virtual reality VR(Virtual reality, modern medicine and so on. With the rapid development and maturity of 3D laser scanning technology, 3D laser scanning technology can be used to obtain high density 3D point cloud data information on the surface of ancient buildings, and then through the later segmentation optimization, filtering and denoising, normal calculation, Surface reconstruction and other operations complete the 3D modeling of point cloud data. Due to the complexity of operation, the definition of interaction and the strict requirement of input data, the software supporting surface reconstruction has not been widely popularized up to now. However, the common method of 3D modeling of ancient buildings is to obtain the physical parameters of each component by manual measurement in the early stage, and to depict them in the later stage by means of 3D modeling software, such as mapping, mapping, and so on. The final effect is not real and the error is large. Through the investigation of the large and small components in the Huizhou architecture, this topic finally selects the unique wooden frame of the bucket lift beam, the gatehouse and the railing as the research object to carry out the research. This paper mainly discusses the following three problems about the surface reconstruction system of Huizhou architectural component point cloud: first, point cloud data preprocessing. Taking Huizhou architecture as an example, the original point cloud data is obtained by multi-site scanning. Firstly, the improved iterative nearest point algorithm (ICP algorithm) is applied to the registration of multi-site cloud data to obtain the whole building point cloud data. After registration point cloud data is segmented and optimized by random sampling consistency algorithm to obtain Liang Zhu point cloud data. Finally, we use voxel mesh method to sample outliers in Liang Zhu point cloud data. Then the outliers are removed by filter Statistical OutlierRemoval. Second, surface reconstruction based on pre-processing point cloud data. By using the least square method to infer directly the normals of pre-processed point cloud data, the normals and their positive and negative directions of each point in Liang Zhu's point cloud data are obtained. With the help of point cloud library PCL(Point Cloud library open source platform, the greedy projection triangulation algorithm BallPivoting algorithm and Poisson algorithm are used to reconstruct the surface of preprocessed and normal Liang Zhu point cloud data, and the core algorithm steps are given. Finally, the corresponding effect diagram and parameter information of each algorithm are obtained. Third, the surface reconstruction results are compared. By comparing the surface reconstruction results of the three algorithms under the same component point cloud condition, as well as the grid surface number, the number of mesh vertices, the number of holes, the time consuming and so on, the results show that the Poisson algorithm is better than the other two methods in the final effect graph. In particular, there are no holes in the final results, which is very important for the integrity output of the final 3D model reconstruction. The above research uses 3D laser scanning technology to obtain the original point cloud data of the measured object, and realizes the preprocessing operations such as point cloud data segmentation, filtering, normality estimation and so on through polygonal gridding technology. Finally, the point cloud data surface reconstruction model based on Poisson algorithm is established. The whole research scheme of surface reconstruction in this paper provides a new research idea for the application of 3D modeling technology in architecture, especially in the field of reconstruction and digitization of ancient buildings.
【学位授予单位】:安徽建筑大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:TU198;P225.2

【参考文献】

相关期刊论文 前10条

1 胡丝兰;周明全;税午阳;武仲科;;一种改进Ball Pivoting的散乱点云数据重建算法[J];系统仿真学报;2015年10期

2 曾锋;杨通;姚山;;点云重构三角网格的生长型神经气算法[J];软件学报;2013年03期

3 程效军;何桂珍;;适用于多值曲面修复的空洞边界提取方法及应用[J];测绘学报;2012年06期

4 于荣欢;邓宝松;吴玲达;瞿师;;三维标量场并行等值面提取与绘制技术[J];计算机辅助设计与图形学学报;2012年02期

5 王莫;;三维激光扫描技术在故宫古建筑测绘中的应用研究[J];故宫博物院院刊;2011年06期

6 王建文;杜春梅;;三维激光扫描系统的关键性技术研究[J];计算机工程与设计;2010年05期

7 刘金玲;唐棣;;基于泊松方程实现点云的表面重构[J];计算机应用与软件;2009年04期

8 周克勤;赵煦;丁延辉;;基于激光点云的3维可视化方法[J];测绘科学技术学报;2006年01期

9 李家才;反求工程中一种数据平滑的方法[J];机械与电子;2005年11期

10 李必军,方志祥,任娟;从激光扫描数据中进行建筑物特征提取研究[J];武汉大学学报(信息科学版);2003年01期

相关博士学位论文 前1条

1 莫X;基于隐式函数的曲面重构方法及其应用[D];华中科技大学;2010年

相关硕士学位论文 前9条

1 李志华;基于边界曲线的细分曲面控制网格的生成方法研究[D];上海交通大学;2015年

2 刘欢;DEM数据的预处理与三维重建算法研究[D];北京化工大学;2014年

3 罗诚;基于复杂约束的稀疏点云空间曲面重构方法与实现[D];电子科技大学;2014年

4 张凯;基于泊松方程的三维表面重建算法的研究[D];河北工业大学;2014年

5 张飞飞;点云数据简化及三维曲面重构[D];吉林大学;2012年

6 周华伟;地面三维激光扫描点云数据处理与模型构建[D];昆明理工大学;2011年

7 李竞超;基于立体视觉的三维重建[D];北京交通大学;2010年

8 肖华;网格重构及特征提取技术研究[D];浙江大学;2010年

9 戴静兰;海量点云预处理算法研究[D];浙江大学;2006年



本文编号:1834335

资料下载
论文发表

本文链接:https://www.wllwen.com/kejilunwen/dizhicehuilunwen/1834335.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户a527a***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com